What Is Life? How Chemistry Becomes Biology by Addy Pross (2012)

I will attempt to show that the chasm separating biology and chemistry is bridgeable, that Darwinian theory can be integrated into a more general chemical theory of matter, and that biology is just chemistry, or to be more precise, a sub-branch of chemistry – replicative chemistry. (p.122)

Repetitive and prolix

This book is 190 pages long. It is much harder to read than it need be because Pross is a bad writer with very bad habits, namely 1. irritating repetition and 2. harking back and forward. The initial point which he repeats again and again in the first 120 pages is that nobody knows the secret of the origins of life and all previous attempts to solve it have been dead ends.

So, what can we conclude regarding the emergence of life on our planet? The short answer: almost nothing. (p.109)

We don’t know how to go about making life because we don’t really know what life is, and we don’t know what life is, because we don’t understand the principles that led to its emergence. (p.111)

The efforts to uncover probiotic-type chemistry, while of considerable interest in their own right, were never likely to lead us to the ultimate goal – understanding how life on earth emerged. (p.99)

Well, at the time of writing, the so-called Holy Grail (the Human Genome sequence) and the language of life that it was supposed to have taught us have not delivered the promised goods. (p.114)

But the systems biology approach has not proved a nirvana… (p.116)

Non-equilibrium thermodynamics has not proved to be the hoped-for breakthrough in seeking greater understanding of biological complexity. (p.119)

A physically based theory of life continues to elude us. (p.119)

While Conway’s Life game has opened up interesting insights into complex systems in general, direct insights into the nature of living systems do not appear to have been forthcoming. (p.120)

The book is so repetitive I though the author and his editor must have Alzheimer’s Disease. On page viii we are told that the physicist Erwin Schrödinger wrote a pithy little book titled What Is Life? which concluded that present-day physics and chemistry can’t explain the phenomenon of life. Then, on page xii, we’re told that the physicist Erwin Schrödinger’ found the issue highly troublesome’. Then on page 3 that the issue ‘certainly troubled the great physicists of the century, amongst them Bohr, Schrödinger and Wigner’. Then on page 36, we learn that:

Erwin Schrödinger, the father of quantum mechanics, whose provocative little book What Is Life? we mentioned earlier, was particularly puzzled by life’s strange thermodynamic behaviour.

When it comes to Darwin we are told on page 8 that:

Darwin himself explicitly avoided the origin of life question, recognising that within the existing state of knowledge the question was premature.

and then, in case we have senile dementia or the memory of a goldfish, on page 35 he tells us that:

Darwin deliberately side-stepped the challenge, recognising that it could not be adequately addressed within the existing state of knowledge.

As to the harking back and forth, Pross is one of those writers who is continually telling you he’s going to tell you something, and then continually reminding you that he told you something back in chapter 2 or chapter 4 – but nowhere in the reading process do you actually get clearly stated the damn thing he claims to be telling.

As we mentioned in chapter 4…

As noted above…

I will say more on this point subsequently…

We will consider a possible resolution of this sticky problem in chapter 7…

As discussed in chapter 5… as we will shortly see… As we have already pointed out… As we have discussed in some detail in chapter 5…  described in detail in chapter 4…

In this chapter I will describe… In this chapter I will attempt…

I will defer this aspect of the discussion until chapter 8…

Jam yesterday, jam tomorrow, but never jam today.

Shallow philosophy

It is a philosophy book written by a chemist. As such it comes over as extremely shallow and amateurish. Pross namechecks Wittgenstein, and (pointlessly) tells us that ‘tractatus’ is Latin for ‘treatise’ (p.48) – but fails to understand or engage with Wittgenstein’s thought.

My heart sank when I came to chapter 3, titled Understanding ‘understanding’ which boils down to a superficial consideration of the difference between a ‘reductionist’ and a ‘holistic’ approach to science, the general idea that science is based on reductionism i.e. reducing systems to their smallest parts and understanding their functioning before slowly building up in scale, whereas ‘holistic’ approach tries to look at the entire system in the round. Pross gives a brief superficial overview of the two approaches before concluding that neither one gets us any closer to an answer.

Instead of interesting examples from chemistry, shallow examples from ‘philosophy’

Even more irritating than the repetition is the nature of the examples. I thought this would be a book about chemistry but it isn’t. Pross thinks he is writing a philosophical examination of the meaning of life, and so the book is stuffed with the kind of fake everyday examples which philosophers use and which are a) deeply patronising b) deeply uninformative.

Thus on page x of the introduction Pross says imagine you’re walking through a field and you come across a refrigerator. He then gives two pages explaining how a refrigerator works and saying that you, coming across a fully functional refrigerator in the middle of a field, is about as probable as the purposeful and complex forms of life can have come about by accident.

Then he writes, Imagine that you get into a motor car. We only dare drive around among ‘an endless stream of vehicular metal’ on the assumption that the other drivers have purpose and intention and will stick to the laws of the highway code.

On page 20 he introduces us to the idea of a ‘clock’ and explains how a clock is an intricate mechanism made of numerous beautifully engineered parts but it will eventually break down. But a living organism on the other hand, can repair itself.

Then he says imagine you’re walking down the street and you bump into an old friend named Bill. He looks like Bill, he talks like Bill and yet – did you know that virtually every cell in Bill’s body has renewed itself since last time you saw him, because life forms have this wonderful ability to repair and renew themselves!

Later, he explains how a Boeing 747 didn’t come into existence spontaneously, but was developed from earlier plane designs, all ultimately stemming from the Wright brothers’ first lighter than air flying machine.

You see how all these examples are a) trite b) patronising c) don’t tell you anything at all about the chemistry of life.

He tells us that if you drop a rock out the window, it falls to the ground. And yet a bird can hover in the air merely by flapping its wings! For some reason it is able to resist the Second law of Thermodynamics! How? Why? Nobody knows!

Deliberately superficial

And when he does get around to explaining anything, Pross himself admits that he is doing it in a trivial, hurried, quick, sketchy way and leaving out most of the details.

I will spare the reader a detailed discussion…

These ideas were discussed with some enthusiasm some 20-30 years ago and without going into further detail…

If that sounds too mathematical, let’s explain the difference by recounting the classical legend of the Chinese emperor who was saved in battle by a peasant farmer. (p.64)

Only in the latter pages – only when he gets to propound his own theory from about page 130 – do you realise that he is not so much making a logical point as trying to get you to see the problem from an entirely new perspective. A little like seeing the world from the Marxist or the Freudian point of view, Pross believes himself to be in possession of an utterly new way of thinking which realigns all previous study and research and thinking on the subject. It is so far-ranging and wide-sweeping that it cannot be told consecutively.

And it’s this which explains the irritating sense of repetition and circling and his constant harking forward to things he’s going to tell you, and then harking back to things he claims to have explained a few chapters earlier. The first 130 pages are like being lost in a maze.

The problem of the origin of life

People have been wondering about the special quality of live things as opposed to dead things for as long as there have been people. Darwin discovered the basis of all modern thinking about life forms, which is the theory of evolution by natural selection. But he shied away from speculating on how life first came about.

Pross – in a typically roundabout manner – lists the ‘problems’ facing anyone trying to answer the question, What is life and how did it begin?

  • life breaks the second law of thermodynamics i.e. appears to create order out of chaos, as opposed to the Law which says everything tends in the opposite direction i.e. tends towards entropy
  • life can be partly defined by its sends of purpose: quite clearly inanimate objects do not have this
  • life is complex
  • life is organised

Put another way, why is biology so different from chemistry? How are the inert reactions of chemistry different from the purposive reactions of life? He sums this up in a diagram which appears several times:

He divides the move from non-life into complex life into two phases. The chemical phase covers the move from non-life to simple life, the biological phase covers the move from simple life to complex life. Now, we know that the biological phase is covered by the iron rules of Darwinian evolution – but what triggered, and how can we account for, the move from non-life to simple life? Hence a big ?

Pross’s solution

Then, on page 127, Pross finally introduces his Big Idea and spends the final fifty or so pages of the book showing how his theory addresses all the problem in existing ‘origin of life’ literature.

His idea begins with the established knowledge that all chemical reactions seek out the most ‘stable’ format.

He introduces us to the notion that chemists actually have several working definitions of ‘stability’, and then introduces us to a new one: the notion of dynamic kinetic stability, or DKS.

He describes experiments by Sol Spiegelman in the 1980s into RNA. This showed how the RNA molecule replicated itself outside of a living cell. That was the most important conclusion of the experiment. But they also found that the RNA molecules replicated but also span off mutations, generally small strands of of RNA, some of which metabolised the nutrients far quicker than earlier varieties. These grew at an exponential rate to swiftly fill the petri dishes and push the longer, ‘correct’ RNA to extinction.

For Pross what Spiegelman’s experiments showed was that inorganic dead chemicals can a) replicate b) replicate at exponential speed until they have established a situation of dynamic kinetic stability. He then goes on to equate his concept of dynamic kinetic stability with the Darwinian one of ‘fitness’. Famously, it is the ‘fit’ which triumph in the never-ending battle for existence. Well, Pross says this concept can be rethought of as, the population which achieves greatest dynamic kinetic stability – which replicates fast enough and widely enough – will survive, will be the fittest.

fitness = dynamic kinetic stability (p.141)

Thus Darwin’s ideas about the eternal struggle for existence and the survival of the fittest can be extended into non-organic chemistry, but in a particular and special way:

Just as in the ‘regular’ chemical world the drive of all physical and chemical systems is toward the most stable state, in the replicative world the drive is also toward the most stable state, but of the kind of stability applicable within that replicative world, DKS. (p.155)

Another way of looking at all this is via the Second Law. The Second Law of Thermodynamics has universally been interpreted as militating against life. Life is an affront to the Law, which says that all energy dissipates and seeks out the state of maximum diffusion. Entropy always triumphs. But not in life. How? Why?

But Pross says that, if molecules like his are capable of mutating and evolving – as the Sol Spiegelman experiments suggest – then they only appear to contradict the Second Law. In actual fact they are functioning in what Pross now declares is an entirely different realm of chemistry (and physics). The RNA replicating molecules are functioning in the realm of replicative chemistry. They are still inorganic, ‘dead’ molecules – but they replicate quickly, mutate to find the most efficient variants, and reproduce quickly towards a state of dynamic kinetic stability.

So what he’s trying to do is show how it is possible for long complex molecules which are utterly ‘dead’, nonetheless to behave in a manner which begins to see them displaying qualities more associated with the realm of biology:

  • ‘reproduction’ with errors
  • triumph of the fittest
  • apparent ‘purpose’
  • the ability to become more complex

None of this is caused by any magical ‘life force’ or divine intervention (the two bogeymen of life scientists), but purely as a result of the blind materialistic forces driving them to take most advantage of their environment i.e. use up all its nutrients.

Pross now takes us back to that two-step diagram of how life came about, shown above – Non-Life to Simple Life, Simple Life to Complex Life, labelled the Chemical Phase and the Biological Phase, respectively.

He recaps how the second phase – how simple life evolves greater complexity – can be explained using Darwin’s theory of evolution by natural selection: even the most primitive life forms will replicate until they reach the limits of the available food sources, at which point any mutation leading to even a fractional differentiation in the efficiency of processing food will give the more advanced variants an advantage. The rest is the three billion year history of life on earth.

It is phase one – the step from non-life to life – which Pross has (repeatedly) explained has given many of the cleverest biologists, physicists and chemists of the 20th century sleepless nights, and which – in chapters 3 and 4 – he runs through the various theories or approaches which have failed to deliver an answer to.

Well, Pross’s bombshell solution is simple. There are not two steps – there was only ever one step. The Darwinian mechanism by which the best adapted entity wins out in a given situation applies to inert chemicals as much as to life forms.

Let me now drop the bombshell… The so-called two-stage process is not two-stage at all. It is really just once, continuous process. (p.127) … what is termed natural selection within the biological world is also found to operate in the chemical world… (p.128)

Pross recaps the findings of that Spiegelman experiment, which was that the RNA molecules eventually made errors in their replication, and some of the erroneous molecules were more efficient at using up the nutrition in the test tube. After just a day, Spiegelman found the long RNA molecules – which took a long time to replicate – were being replaced by much shorter molecules which replicated much quicker.

There, in a nutshell, is Pross’s theory in action. Darwinian competition, previously thought to be restricted only to living organisms, can be shown to apply to inorganic molecules as well – because inorganic molecules themselves show replicating, ‘competitive’ behaviour.

For Pross this insight was confirmed in experiments conducted by Gerald Joyce in 2009, who showed that a variety of types of RNA, placed in a nutrient, replicated in such a way as to establish a kind of dynamic equilibrium, where each molecule established a chemical niche and thrived on some of the nutrients, while other RNA varieties evolved to thrive on other types. To summarise:

The processes of abiogenesis and evolution are actually one physicochemical process governed by one single mechanism, rather than two discrete processes governed by two different mechanisms. (p.136)

Or:

The study of simple replicating systems has revealed an extraordinary connection – that Darwinian theory, that quintessential biological principle, can be incorporated into a more general chemical theory of evolution, one that encompasses both living and non-living systems. it is that integration that forms the basis of the theory of life I propose. (p.162)

The remaining 50 or so pages work through the implications of this idea or perspective. For example he redefines the Darwinian notion of ‘fitness’ to be ‘dynamic kinetic stability’. In other words, the biological concept of ‘fitness’ turns out, in his theory, to be merely the biological expression of a ‘more general and fundamental chemical concept’ (p.141).

He works through a number of what are traditionally taken to be life’s attributes and reinterprets in the new terms he’s introduced, in terms of dynamic kinetic stability, replicative chemistry and so on. Thus he addresses life’s complexity, life’s instability, life’s dynamic nature, life’s diversity, life’s homochirality, life’s teleonomic character, the nature of consciousness, and speculating about what alien life would look like before summing up his theory. Again.

A solution to the primary question exists and is breathtakingly simple: life on earth emerged through the enormous kinetic power of the replication reaction acting on unidentified, but simple replicating systems, apparently composed of chain-like oligomeric substances, RNA or RNA-like, capable of mutation and complexification. That process of complexification took place because it resulted in the enhancement of their stability – not their thermodynamic stability, but rather the relevant stability in the world of replicating systems, their DKS. (p.183)

A thought about the second law

Pross has explained that the Second Law of Thermodynamics apparently militates against the spontaneous generation of life, in any form, because life is organised and the second law says everything tends towards chaos. But he comes up with an ingenious solution. If one of these hypothetical early replicating molecules acquired the ability to generate energy from light – it would effectively bypass the second law. It would acquire energy from outside the ‘system’ in which it is supposedly confined and in which entropy prevails.

The existence of an energy-gathering capacity within a replicating entity effectively ‘frees’ that entity from the constraints of the Second Law in much the same way that a car engine ‘free’s a car from gravitational constrains. (p.157)

This insight shed light on an old problem, and on a fragment of the overall issue – but it isn’t enough by itself to justify his theory.

Thoughts

Several times I nearly threw away the book in my frustration before finally arriving at the Eureka moment about page 130. From there onwards it does become a lot better. As you read Pross you have the sense of a whole new perspective opening up on this notorious issue.

However, as with all these theories, you can’t help thinking that if his theory had been at all accepted by the scientific community – then you’d have heard about it by now.

If his theory really does finally solve the Great Mystery of Life which all the greatest minds of humanity have laboured over for millennia… surely it would be a bit better known, or widely accepted by his peers?

The theory relies heavily on results from Sol Spiegelman’s experiments with RNA in the 1980s. Mightn’t Spiegelman himself, or other tens of thousands of other biologists, have noticed its implications in the thirty odd years between the experiments and Pross’s book?

And if Pross has solved the problem of the origin of life, how come so many other, presumably well-informed and highly educated scientists, are still researching the ‘problem’?

(By the way, the Harvard website optimistically declares that:

Thanks to advances in technologies in these areas, answers to some of the compelling questions surrounding the origins of life in the universe were now possibly within reach… Today a larger team of researchers have joined this exciting biochemical ‘journey through the Universe’ to unravel one of humankind’s most compelling mysteries – the origins of life in the Universe.

Possibly within reach’, lol. Good times are always just around the corner in the origins-of-life industry.)

So I admit to being interested by pages 130 onwards of his book, gripped by the urgency with which he tells his story, gripped by the vehemence of his presentation, in the same way you’d be gripped by a thriller while you read it. But then you put it down and forget about it, going back to your everyday life. Same here.

It’s hard because it is difficult to keep in mind Pross’s slender chain of argumentation. It rests on the two-stage diagram – on Pross’s own interpretation of the Spiegelman experiments – on his special idea of dynamic kinetic stability – and on the idea of replicative chemistry.

All of these require looking at the problem through is lens, from his perspective – for example agreeing with the idea that the complex problem of the origin of life can be boiled down to that two-stage diagram; this is done so that we can then watch him pull the rabbit out of the hat by saying it needn’t be in two stages after all! So he’s address the problem of the diagram. But it is, after all, just one simplistic diagram.

Same with his redefining Darwin’s notion of ‘fitness’ as being identical to his notion of dynamic kinetic stability. Well, if he says so. but in science you have to get other scientists to agree with you, preferably by offering tangible proof.

These are more like tricks of perspective than a substantial new theory. And this comes back to his rhetorical strategy of repetition, to the harping on the same ideas.

The book argues its case less with evidence (there is, in the end, very little scientific ‘evidence’ for his theory – precisely two experiments, as far as I can see), but more by presenting a raft of ideas in their current accepted form (for 130 boring pages), and then trying to persuade you to see them all anew, through his eyes, from his perspective (in the final 50 pages). As he summarises it (yet again) on page 162:

The emergence of life was initiated by the emergence of a single replicating system, because that seemingly inconsequentual event opened the door to a distinctly different kind of chemistry – replicative chemistry. Entering the world of replicative chemistry reveals the existence of that other kind of stability in nature, the dynamic kinetic stability of things that are good at making more of themselves.Exploring the world of replicative chemistry helps explain why a simple primordial replicating system would have been expected to complexify over time. The reason: to increase its stability – its dynamic kinetic stability (DKS).

Note the phrase’ entering the world of replicative chemistry…’ – It sounds a little like ‘entering the world of Narnia’. It is almost as if he’s describing a religious conversion. All the facts remain the same, but new acolytes now see them in a totally different light.

Life then is just the chemical consequences that derive from the power of exponential growth operating on certain replicating chemical systems. (p.164)

(I am quoting Pross at length because I don’t want to sell his ideas short; I want to convey them as accurately as possible, and in his own words.)

Or, as he puts it again a few pages later (you see how his argument proceeds by, or certainly involves a lot of, repetition):

Life then is just a highly intricate network of chemical reactions that has maintained its autocatalytic capability, and, as already noted, that complex network emerged one step at a time starting from simpler netowrks. And the driving force? As discussed in earlier chapter, it is the drive toward greater DKS, itself based on the kinetic power of replication, which allows replicating chemical systems to develop into ever-increasing complex and stable forms. (p.185)

It’s all reasonably persuasive when you’re reading the last third of his book – but oddly forgettable once you put it down.

Fascinating facts and tasty terminology

Along the way, the reader picks up a number of interesting ideas.

  • Panspermia – the theory that life exists throughout the universe and can be carried on meteors, comets etc, and one of these landed and seeded life on earth
  • every adult human is made up of some ten thousand billion cells; but we harbour in our guts and all over the surface of our bodies ten times as many – one hundred thousand bacteria. In an adult body hundreds of billions of new cells are created daily in order to replace the ones that die on a daily basis
  • in 2017 it was estimated there may be as many as two billion species of bacteria on earth
  • the Principle of Divergence – many different species are generated from a few sources
  • teleonomy – the quality of apparent purposefulness and goal-directedness of structures and functions in living organisms
  • chiral – an adjective meaning a molecule’s mirror image is not superimposable upon the molecule itself: in fact molecules often come in mirror-image formations, known as left and right-handed
  • racemic – a racemic mixture, or racemate, is one that has equal amounts of left- and right-handed enantiomers of a chiral molecule.
  • reductionist – analysing and describing a complex phenomenon in terms of its simple or fundamental constituents
  • holistic – the belief that the parts of something are intimately interconnected and explicable only by reference to the whole
  • Second Law of Thermodynamics – ‘in all energy exchanges, if no energy enters or leaves the system, the potential energy of the state will always be less than that of the initial state.’ This is also commonly referred to as entropy
  • the thermodynamic consideration – chemical reactions will only take place if the reaction products are of lower free energy than the reactants
  • catalyst – a substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change
  • catalytic – requires an external catalyst to spark a chemical reaction
  • auocatalytic – a reaction which catalyses itself
  • cross-catalysis – two chemicals trigger reactions in each other
  • static stability – water, left to itself, is a stable chemical compound
  • dynamic stability – a river is always a river even though it is continually changing
  • prebiotic earth – earth before life
  • abiogenesis – the process whereby life was derived from non-living chemicals
  • systems chemistry – the chemical reactions of replicating molecules and the networks they create
  • the competitive exclusion principle – complete competitors cannot co-exist, or, Ecological differentiation is th enecessary condition for co-existence

Does anyone care?

Pross thinks the fact that biologists and biochemists can’t account for the difference between complex but inanimate molecules, and the simplest actual forms of life – bacteria – is a Very Important Problem. He thinks that:

Until the deep conceptual chasm that continues to separate living and non-living is bridged, until the two sciences – physics and biology – can merge naturally, the nature of life, and hence man’s place in the universe, will continue to remain gnawingly uncertain. (p.42)

‘Gnawingly’. Do you feel the uncertainty about whetherbiology and physics can be naturally merged is gnawing away at you? Or, as he puts it in his opening sentences:

The subject of this book addresses basic questions that have transfixed and tormented humankind for millennia, ever since we sought to better understand our place in the universe – the nature of living things and their relationship to the non-living. The importance of finding a definitive answer to these questions cannot be overstated – it would reveal to us not just who and what we are, but would impact on our understanding of the universe as a whole. (p.viii)

I immediately disagreed. ‘The importance of finding a definitive answer to these questions cannot be overstated’? Yes it can. Maybe, just maybe – it is not very important at all.

What do we mean by ‘important’, anyway? Is it important to you, reading this review, to realise that the division between the initial, chemical phase of the origin of life and the secondary, biological phase, is in fact a delusion, and that both processes can be accounted for by applying Darwinian selection to supposedly inorganic chemicals?

If you tried to tell your friends and family 1. how easy would you find it to explain? 2. would you seriously expect anyone to care?

Isn’t it, in fact, more likely that the laws or rules or theories about how life arose from inanimate matter are likely to be so technical, so specialised and so hedged around with qualifications, that only highly trained experts can really understand them?

Maybe Pross has squared the circle and produced a feasible explanation of the origins of life on earth. Maybe this book really is – The Answer! But in which case – why hasn’t everything changed, why hasn’t the whole human race breathed a collective sigh of relief and said, NOW we understand how it all started, NOW we know what it all means, NOW I understand who I am and my place in the universe?

When I explained Pross’s theory, in some detail, to my long-suffering wife (who did a life sciences degree) she replied that, quite obviously chemistry and biology are related; anyone who’s studied biology knows it is based on chemistry. She hardly found it ‘an extraordinary connection’. When I raised it with my son, who is studying biology at university, he’d never heard of Pross or his theory.

So one’s final conclusion is that our understanding of ‘The nature of life, and hence man’s place in the universe’ has remained remarkably unchanged by this little book and will, in all likelihood, remain so.


Related links

Reviews of other science books

Chemistry

Cosmology

The Environment

Genetics and life

Human evolution

Maths

Particle physics

Psychology

The Origin of the Universe by John D. Barrow (1994)

In the beginning, the universe was an inferno of radiation, too hot for any atoms to survive. In the first few minutes, it cooled enough for the nuclei of the lighter elements to form. Only millions of years later would the cosmos be cool enough for whole atoms to appear, followed soon by simple molecules, and after billions of years by the complex sequence of events that saw the condensation of material into stars and galaxies. Then, with the appearance of stable planetary environments, the complicated products of biochemistry were nurtured, by processes we still do not understand. (The Origin of the Universe, p.xi)

In the late 1980s and into the 1990s science writing became fashionable and popular. A new generation of science writers poured forth a wave of books popularising all aspects of science. The ones I remember fell into two broad categories, evolution and astrophysics. Authors such as Stephen Jay Gould and Edward O. Wilson, Richard Dawkins and Steve Jones (evolution and genetics) and Paul Davies, John Gribbin, John Polkinghorne and, most famously of all, Stephen Hawking, (cosmology and astrophysics) not only wrote best-selling books but cropped up as guests on radio shows and even presented their own TV series.

Early in the 1990s the literary agent John Brockman created a series titled Science Masters in which he commissioned experts across a wide range of the sciences to write short, jargon-free and maths-light introductions to their fields.

This is astrophysicist John D. Barrow’s contribution to the series, a short, clear and mind-blowing introduction to current theory about how our universe began.

The Origin of the Universe

Billions It is now thought the universe is about 13.7 billion years old, the solar system is 4.57 billion years old and the earth is 4.54 billion years old. The oldest surface rocks anywhere on earth are in northwestern Canada near the Great Slave Lake, and are 4.03 billion years. The oldest fossilised bacteria date from 3.48 billion years ago.

Visible universe The visible universe is the part of the universe which light has had time to cross and reach us. If the universe is indeed 13.7 billion years old, and nothing can travel faster than the speed of light (299,792,458 metres per second) then there is, in effect, a ‘horizon’ to what we can see. We can only see the part of the universe which is about 13.7 billion years old. Whether there is any universe beyond our light horizon, and what it looks like, is something we can only speculate about.

Steady state Until the early 20th century philosophers and scientists thought the universe was fixed, static and stable. Even Einstein put into his theory of relativity a factor he named ‘the cosmological constant’, which wasn’t strictly needed, solely in order to make the universe appear static and so conform to contemporary thinking. The idea of this constant was to counteract the attractive force of gravity, in order to ensure his steady state version of the universe didn’t collapse into a big crunch.

Alexander Friedmann It was a young mathematician, Alexander Friedmann, who looked closely at Einstein’s formulae and showed that the cosmological constant was not necessary, not if the universe was expanding; in this case, no hypothetical repelling force would be needed, just the sheer speed of outward expansion. Einstein eventually conceded that including the constant in the formulae of relativity had been a major mistake.

Edwin Hubble In what Barrow calls ‘the greatest discovery of twentieth century science’, the American astronomer Edwin Hubble in the 1920s discovered that distant galaxies are moving away from us, and the further away they are, the faster they are moving, which became known as Hubble’s Law. He established this by noticing the ‘red-shifting’ of frequencies denoting detectable elements in these galaxies i.e. their light frequencies had been altered downwards, as light (and sound and all waves are) when something is moving away from the observer.

Critical divide An argument against the steady-state theory of the universe is that, over time, the gravity of all the objects in it would pull everything together and it would all collapse into one massive clump. Only an initial throwing out of material could counter-act the affect of all that gravity.

So how fast is the universe expanding? Imagine a rate, x. Below that speed, the effect of gravity will eventually overcome the outward acceleration, the universe will slow down, stop expanding and start to contract. Significantly above this speed, x, and the universe would continue flying apart in all directions so quickly that gas clouds, stars, galaxies and planets would never be formed.

As far as we know, the actual acceleration of the universe hovers just around this rate, x – just fast enough to prevent the universe from collapsing, but not too fast for it to be impossible for matter to form. Just the right speed to create the kind of universe we see around us. The name for this threshold is the critical divide.

Starstuff Stars are condensations of matter large enough to create at their centre nuclear reactions. These reactions burn hydrogen into helium for a long, sedate period, as our sun is doing. At the end of their lives stars undergo a crisis, an explosive period of rapid change during which helium is transformed into carbon nitrogen, oxygen, silicon, phosphorus and many of the other, heavier elements. When the ailing star finally explodes as a supernova these elements disperse into space and ultimately find their way into clouds of gas which condense as planets.

Thus every plant, animal and person alive on earth is made out of chemical elements forged in the unthinkable heat of dying stars – which is what Joni Mitchell meant when she sang, ‘We are stardust’.

Heat death A theory that the universe will continue expanding and matter become so attenuated that there are no heat or dynamic inequalities left to fuel thermal reactions i.e. matter ends up smoothly spread throughout space with no reactions happening anywhere. Thermodynamic equilibrium reached at a universal very low temperature. The idea was formulated by William Thomson, Lord Kelvin, in the 1850s who extrapolated from Victorian knowledge of mechanics and heat. 170 years later, updated versions of heat death remain a viable theory for the very long-term future of the universe.

Steady state The ‘steady state’ theory of the universe was developed by astrophysicists Thomas Gold, Hermann Bondi and Fred Hoyle in 1948. They theorised that. although the universe appeared to be expanding it had always existed, the expansion being caused by a steady rate of creation of new matter. This theory was disproved in the mid-1960s by the confirmation of background radiation

Background radiation theorised In the 1940s George Gamow and assistants Alpher and Herman theorised that, if the universe began in a hot dense state way back, there should be evidence, namely a constant layer of background radiation everywhere which, they calculated, would be 5 degrees above absolute zero.

Background radiation proved In the 1960s researchers at Bell Laboratories, calibrating a sensitive radio antenna, noticed a constant background interference to their efforts which seemed to be coming from every direction of the sky. A team from Princeton interpreted this as the expected background radiation and measured it at 2.5 degrees Kelvin. It is called ‘cosmic microwave background radiation’ and is one of the strong proofs for the Big Bang theory. The uniformity of the background radiation was confirmed by observations from NASA’s Cosmic Background Explorer satellite in the early 1990s.

Empty universe There is very little material in the universe. If all the stars and galaxies in the universe were smoothed out into a sea of atoms, there would only be about one atom per cubic meter of space.

Inflation This is a theory developed in 1979 by theoretical physicist Alan Guth – the idea is that the universe didn’t arise from a singularity which exploded and grew at a steady state but instead, in the first milliseconds, underwent a period of hyper-growth, which then calmed back down to ‘normal’ expansion.

The theory has been elaborated and generated numerous variants but is widely accepted because it explains many aspects of the universe we see today – from its large-scale structure to the way it explains how minute quantum fluctuations in this initial microscopic inflationary region, once magnified to cosmic size, became the seeds for the growth of structure in the Universe.

The inflation is currently thought to have taken place from 10−36 seconds after the conjectured Big Bang singularity to sometime between 10−33 or 10−32 seconds after.

Chaotic inflationary universe Proposed by Soviet physicist Andrei Linde in 1983, this is the idea that multiple distinct sections of the very early universe might have experienced inflation at different rates and so have produced a kind of cluster of universes, like bubbles in a bubble bath, except that these bubbles would have to be at least nine billion light years in size in order to produce stable stars. Possibly the conditions in each of the universes created by chaotic inflation could be quite different.

Eternal inflation A logical extension of chaotic inflation is that you not only have multiple regions which undergo inflation at the same time, but you might have sub-regions which undergo inflation at different times – possibly one after the other, in other words maybe there never was a beginning, but this process of successive creations and hyper-inflations has been going on forever and is still going on but beyond our light horizon (which, as mentioned above, only reaches to about 13.7 billion light years away).

Time Is time a fixed and static quality which creates a kind of theatre, an external frame of reference, in which the events of the universe take place, as in the Newtonian view? Or, as per Einstein, is time itself part of the universe, inseparable from the stuff of the universe and can be bent and distorted by forces in the universe? This is why Einstein used the expression ‘spacetime’?

The quantum universe Right back at the very beginning, at 10−43 seconds, the size of the visible universe was smaller than its quantum wavelength — so its entire contents would have been subject to the uncertainty which is the characteristic of quantum physics.

Time is affected by a quantum view of the big bang because, when the universe was still shrunk to a microscopic size, the quantum uncertainty which applied to it might be interpreted as meaning there was no time. That time only ‘crystallised’ out as a separate ‘dimension’ once the universe had expanded to a size where quantum uncertainty no longer dictated.

Some critics of the big bang theory ask, ‘What was there before the big bang?’ to which exponents conventionally reply that there was no ‘before’. Time as we experience it ceased to exist and became part of the initial hyper-energy field.

This quantum interpretation suggests that there in fact was no ‘big bang’ because there was literally no time when it happened.

Traditional visualisations of the big bang show an inverted cone, at the top is the big universe we live in and as you go back in time it narrows to a point – the starting point. Imagine, instead, something more like a round-bottomed sack: there’s a general expansion upwards and outwards but if you penetrate back to the bottom of the sack there is no ‘start’ point.

This theory was most fully worked out by Stephen Hawking and James Hartle.

The Hartle-Hawking no boundary Hartle and Hawking No-Boundary Proposal

Wormholes The book ends with speculations about the possibility that ‘wormholes’ existed in the first few milliseconds, tubes connecting otherwise distant parts of the exploding ball of universe. I understood the pictures of these but couldn’t understand the problems in the quantum theory of the origin which they set out to solve.

And the final section emphasises that everything cosmologists work on relates to the visible universe. It may be that the special conditions of the visible universe which we know about, are only one set of starting conditions which apply to other areas of the universe beyond our knowledge or to other universes. We will never know.

Thoughts

Barrow is an extremely clear and patient explainer. He avoids formulae. Between his prose and the many illustrations I understood most of what he was trying to say, though a number of concepts eluded me.

But the ultimate thing that comes over is his scepticism. Barrow summarises recent attempts to define laws governing the conditions prevailing at the start of the universe by, briefly describing the theories of James Hartle and Stephen Hawking, Alex Vilenkin, and Roger Penrose. But he does so only to go on to emphasise that they are all ‘highly speculative’. They are ‘ideas for ideas’ (p.135).

By the end of the book you get the idea that a very great deal of cosmology is either speculative, or highly speculative. But then half way through he says it’s a distinguishing characteristic of physicists that they can’t stop tinkering – with data, with theories, with ideas and speculations.

So beyond the facts and then the details of the theories he describes, it is insight into this quality in the discipline itself, this restless exploration of new ideas and speculations relating to some of the hardest-to-think-about areas of human knowledge, which is the final flavour the reader is left with.


Related links

Reviews of other science books

Cosmology

The environment

Human evolution

Genetics and life

  • What Is Life? How Chemistry Becomes Biology by Addy Pross (2012)
  • The Diversity of Life by Edward O. Wilson (1992)
  • The Double Helix by James Watson (1968)

Maths

Particle physics

Psychology

Irrationality: The Enemy Within by Stuart Sutherland (1992)

The only way to substantiate a belief is to try to disprove it. (p.48)

Sutherland was 65 when he wrote this book, nearing the end of a prestigious career in psychology research. His aim was to lay out, in 23 themed chapters, all the psychological and sociological research data  from hundreds of experiments, which show just how prey the human mind is to a plethora of unconscious biases, prejudices, errors, mistakes, misinterpretations and so on – the whole panoply of ways in which the supposedly rational human beings can end up making grotesque mistakes. By the end he claims to have defined and demonstrated over 100 distinct cognitive errors humans are prone to (p.309).

I first read it in 2000 and it made a big impact on me because I didn’t really know that this entire area of study existed, and had certainly never read such a compendium of sociology and psychology experiments before.

I found the naming of the various errors particularly powerful. They reminded me of the lists of weird and wonderful Christian heresies I was familiar with from years of reading medieval history. And, after all, the two have a lot in common, both being lists of ‘errors’ which the human mind can make as it falls short of a) orthodox theology and b) optimally rational thinking, the great shibboleths of the Middle Ages and of the Modern World, respectively.

 

Reading it now, 20 years later, having brought up a couple of children and worked for a while in big government departments, I am a lot less shocked and amazed. I have witnessed at first hand the utter irrationality of small and medium-sized children – and then so many examples of the corporate conformity, avoidance of embarrassment, unwillingness to speak up, deferral to authority, and general mismanagement to be found in the civil service that, upon rereading the book, hardly any of it came as a surprise, more a confirmation of what I’ve witnessed at first hand.

But to have the errors so carefully named and defined and worked through in a structured way, with so many experiments giving such vivid proof of how useless humans are at even basic logic was still very enjoyable.

What is rationality?

You can’t define irrationality without first defining what you mean by rationality:

Rational thinking is most likely to lead to the conclusion that is correct, given the information available at the time (with the obvious rider that, as new information comes to light, you should be prepared to change your mind).

Rational action is that which is most likely to achieve your goals. But in order to achieve this, you have to have clearly defined goals. Not only that but, since most people have multiple goals, you must clearly prioritise your goals.

Few people think hard about their goals and even fewer think hard about the many possible consequences of their actions. (p.129)

Cognitive biases contrasted with logical fallacies

Before proceeding it’s important to point out that there is a wholly separate subject of logical fallacies. As part of his Philosophy A-Level my son was given a useful handout with a list of about fifty of these. But logical fallacies are not the same as cognitive biases.

A logical fallacy stems from an error in a logical argument; it is specific and easy to identify and correct. Cognitive bias derives from deep-rooted, thought-processing errors which themselves stem from problems with memory, attention, self-awareness, mental strategy and other mental mistakes. Far harder to acknowledge, in many cases, very hard to correct.

Fundamentals of irrationality

1. Innumeracy One of the largest causes of all irrational behaviour is that people by and large don’t understand statistics or maths. Thus most people are not intellectually equipped to understand the most reliable type of information available to human beings – data in the form of numbers. Instead they tend to make decisions based on a wide range of faulty and irrational psychological biases.

2. Physiology People are often influenced by physiological factors. Apart from obvious ones like tiredness or hunger, which are universally known to affect people’s cognitive abilities, there are also a) drives (direct and primal) like hunger, thirst, sex, and b) emotions (powerful but sometimes controllable) like love, jealousy, fear and – especially relevant – embarrassment: acute reluctance to acknowledge limits to your own knowledge or that you’ve made a mistake.

More seriously people can be alcoholics, drug addicts, and prey to a wide range of other obsessive behaviours, not to mention suffering from a wide range of mental illnesses or conditions which undermine any attempt at rational decision-making, such as stress, anxiety or, at the other end of the spectrum, depression and loss of interest.

3. The functional limits of consciousness Numerous experiments have shown that human beings have a limited capacity to process information. Given that people rarely have a) a sufficient understanding of the relevant statistical data, and b) the RAM capacity to process all the data required to make the optimum decision, it is no surprise that most of us fall back on all manner of more limited, non-statistical biases and prejudices when it comes to making decisions.

The wish to feel good The world is threatening, dangerous and competitive. Humans want to feel safe, secure, calm, in control. This is fair enough, but it does mean that people have a way of blocking out any kind of information which threatens them. People irrationally believe they are cleverer than they in fact are, are qualified in areas of activity of knowledge where they aren’t, people stick to bad decisions for fear of being embarrassed or humiliated, and for the same reason reject new evidence which contradicts their position.

Named types of error and bias

Jumping to conclusions Sutherland tricks the reader no page one by asking a series of questions and then pointing out, that if you tried to answer about half of them, you are a fool since they don’t contain enough information to arrive at any sort of solution. Jumping to conclusions before we have enough evidence is a basic and universal error. One way round this is to habitually use a pen and paper to set out the pros and cons of any decision, which also helps highlight areas where you realise you don’t have enough information.

The availability error All the evidence is that the conscious mind can only hold a small number of data or impressions at any one time (near the end of the book, Sutherland claims the maximum is seven items, p.319). Many errors are due to people reaching for the most available explanation, using the first thing that comes to mind, and not taking the time to investigate further and make a proper, rational survey of the information.

Many experiments show that you can unconsciously bias people by planting ideas, words or images in their minds which then directly affect decisions they take hours later about supposedly unconnected issues.

Studies show that doctors who have seen a run of a certain condition among their patients become more likely to diagnose it in patients who don’t have it. The diagnosis is more ‘available’.

The news media is hard-wired to publicise shocking and startling stories which leads to the permanent misleading of the reading public. One tourist eaten by a shark in Australia eclipses the fact that you are far more likely to die in a car crash than be eaten by a shark.

Thus ‘availability’ is also affected by impact or prominence. Experimenters read out a list of men and women to two groups without telling them that there are exactly 25 men and 25 women, and asked them to guess the ratio of the sexes. If the list included some famous men, the group was influenced to think there were more men, if the list included famous women, the group thought there are more women than men.

The entire advertising industry is based on the availability error in the way it invents straplines, catchphrases and jingles designed to pop to the front of your mind when you consider any type of product, to be – in other words – super available.

I liked the attribution of the well-known fact that retailers price goods at just under the nearest pound, to the availability error. Most of us find £5.95 much more attractive than £6. It’s because we only process the initial 5, the first digit, it is more available.

Numerous studies have shown that the effect is hugely increased under stress. Under stressful situations – in an accident – people fixate on the first solution that comes to mind and refuse to budge.

The primacy effect First impressions. Interviewers make up their minds in the first minute of an interview and then spend the rest of the time collecting data to confirm that first impression.

The anchor effect In picking a number people tend to choose one close to any number they were presented with. Two groups were asked to estimate whether the population of Turkey was a) bigger than 5 million b) less than 65 million, and what it was. The group who’d had 5 million planted in their mind hovered around 15 million, the group who’d had 65 million hovered around 35 million. They were both wrong. It is 80 million.

The halo effect People extrapolate the nature of the whole from just one quality e.g. in tests, people think attractive people must be above average in personality and intelligence although of course there is no reason why they should be. Hence this error’s alternative name, the ‘physical attractiveness stereotype’. The halo effect is fundamental to advertising which seeks to associate images of beautiful men, women, smiling children, sunlit countryside etc with the product.

The existence of the halo effect and primacy effect are both reasons why interviews are a poor way to assess candidates for jobs or places.

The devil effect Opposite of the above: extrapolating from negative appearances to the whole. This is why it’s important to dress smartly for an interview or court appearance, it really does influence. In an experiment examiners were given identical answers, but some in terrible handwriting, some in beautifully clear handwriting. Clear handwriting consistently scored higher marks despite identical factual content of the scripts.

Illusory correlation People find links between disparate phenomena which simply don’t exist, thus:

  • people exaggerate the qualities of people or things which stand out from their environments
  • people associate rare qualities with rare things

This explains a good deal of racial prejudice: a) immigrants stand out b) a handful of immigrants commit egregious behaviour – therefore it is a classic example of illusory correlation to associate the two. What is missing is taking into account all the negative examples i.e. the millions of immigrants who make no egregious behaviour and whose inclusion would give you a more accurate statistical picture. Pay attention to negative cases.

Stereotypes 1. People tend to notice anything which supports their existing opinions. 2. We notice the actions of ‘minorities’ much more than the actions of the invisible majority.

Projection People project onto neutral phenomena patterns and meanings they are familiar with or which bolster their beliefs. Compounded by –

Obstinacy Sticking to personal opinions (often made in haste / first impressions / despite all evidence to the contrary) aka The boomerang effect When someone’s opinions are challenged, they just become more obstinate about it. Aka Belief persistence. Aka pig-headedness. Exacerbated by –

Group think People associate with others like themselves, which makes them feel safe by a) confirming their beliefs and b) letting them hide in a crowd. Experiments have shown how people in self-supporting groups are liable to become more extreme in their views. Also – and I’ve seen this myself – groups will take decisions that almost everyone in the group, as individuals, know to be wrong – but no-one is prepared to risk the embarrassment or humiliation of pointing it out. The Emperor’s New Clothes. Groups are more likely to make irrational decisions than individuals are.

Confirmation bias The tendency to search for, interpret, favour, and recall information in a way that confirms one’s pre-existing beliefs or hypotheses. In an experiment people were read out a series of statements about a named person, who had a stated profession and then two adjectives describing them, one what you’d expect, the other less predictable. ‘Carol, a librarian, is attractive and serious’. When asked to do a quiz at the end of the session, participants showed a marked tendency to remember the expected adjective, and forget the unexpected one. Everyone remembered that the air stewardess was ‘attractive’ but remembered the librarian for being ‘serious’.

We remember what we expect to hear. (p.76)

Or: we remember what we remember in line with pre-existing habits of thought, values etc.

We marry people who share our opinions, we have friends with people who share our opinions, we agree with everyone in our circle on Facebook.

Self-serving biases When things go well, people take the credit, when things go badly, people blame external circumstances.

Avoiding embarrassment People obey, especially in a group situation, bad orders because they don’t want to stick out. People go along with bad decisions because they don’t want to stick out. People don’t want to admit they’ve made a mistake, in front of others, or even to themselves.

Avoiding humiliation People are reluctant to admit mistakes in front of others. And rather than make a mistake in front of others, people would rather keep quiet and say nothing (in a meeting situation) or do nothing, if everyone else is doing nothing (in an action situation). Both of these avoidances feed into –

Obedience The Milgram experiment proved that people will do any kind of atrocity for an authoritative man in a white coat. All of his students agreed to inflict life-threatening levels of electric shock on the victim, supposedly wired up in the next door room and emitting blood curdling (faked) screams of pain. 72% of Senior House Officers wouldn’t question the decision of a consultant, even if they thought he was wrong.

Conformity Everyone else is saying or doing it, so you say or do it so as not to stick out / risk ridicule.

Obedience is behaving in a way ordered by an authority figure. Conformity is behaving in a way dictated by your peers.

The wrong length lines experiment. You’re put in a room with half a dozen stooges, and shown a piece of card with a line on it and then another piece of card with three lines of different length on it, and asked which of the lines on card B is the same length as the line on card A. To your amazement, everyone else in the room chooses a line which is obviously wildly wrong. In experiments up to 75%! of people in this situation go along with the crowd and choose the line which they are sure, can see, know is wrong – because people are that easily swayed.

Sunk costs fallacy The belief that you have to continue wasting time and money on a project because you’ve invested x amount of time and money to date. Or ‘throwing good money after bad’.

Sutherland keeps cycling round the same nexus of issues, which is that people jump to conclusions – based on availability, stereotypes, the halo and anchor effects – and then refuse to change their minds, twisting existing evidence to suit them, ignoring contradictory evidence.

Misplaced consistency & distorting the evidence Nobody likes to admit (especially to themselves) that they are wrong. Nobody likes to admit (especially to themselves) that they are useless at taking decisions.

Our inability to acknowledge our own errors even to ourselves is one of the most fundamental causes of irrationality. (p.100)

And so:

  • people consistently avoid exposing themselves to evidence that might disprove their beliefs
  • on being faced with evidence that disproves their beliefs, they ignore it
  • or they twist new evidence so as to confirm their existing beliefs
  • people selectively remember their own experiences, or misremember the evidence they were using at the time, in order to validate their current decisions and beliefs
  • people will go to great lengths to protect their self-esteem

Sutherland says the best cleanser / solution / strategy to fixed and obstinate ideas is to make the time to gather as much evidence as possible and to try to disprove your own position. The best solution will be the one you have tried to demolish with all the evidence you have and still remains standing.

People tend to seek confirmation of their current hypothesis, whereas they should be trying to disconfirm it. (p.138)

Fundamental attribution error Ascribing other people’s behaviour to their character or disposition rather than to their situation. Subjects in an experiment watched two people holding an informal quiz: the first person made up questions (based on what he knew) and asked the second person who, naturally enough, hardly got any of them right. Observers consistently credited the quizzer with higher intelligence than the answerer, completely ignoring the in-built bias of the situation, and instead ascribing the difference to character.

We are quick to personalise and blame in a bid to turn others into monolithic entities which we can then define and control – this saves time and effort, and makes us feel safer and secure – whereas the evidence is that all people are capable of a wide range of behaviours depending on the context and situation.

Once you’ve pigeon-holed someone, you will tend to notice aspects of their behaviour which confirm your view – confirmation bias and/or illusory correlation and a version of the halo/devil effect. One attribute colours your view of a more complex whole.

Actor -Observer Bias Variation on the above: when we screw up we find all kinds of reasons in the situation to exonerate ourselves, we performed badly because we’re ill, jet-lagged, grandma died, reasons that are external to us. If someone else screws up, it is because they just are thick, lazy, useless. I.e. we think of ourselves as complex entities subject to multiple influences, and others as monolithic types.

False Consensus Effect Over-confidence that other people think and feel like us, that our beliefs and values are the norm – in my view one of the greatest errors of our time.

It is a variation of the ever-present Availability Error because when we stop to think about any value or belief we will tend to conjure up images of our family and friends, maybe workmates, the guys we went to college with, and so on: in other words, the people available to memory – simply ignoring the fact that these people are a drop in the ocean of the 65 million people in the UK. See Facebubble.

The False Consensus Effect reassures us that we are normal, our values are the values, we’re the normal ones: it’s everyone else who is wrong, deluded, racist, sexist, whatever we don’t approve of.

Not in Sutherland’s book, I’ve discovered some commentators naming this the Liberal fallacy:

For liberals, the correctness of their opinions – on universal health care, on Sarah Palin, on gay marriage – is self-evident. Anyone who has tried to argue the merits of such issues with liberals will surely recognize this attitude. Liberals are pleased with themselves for thinking the way they do. In their view, the way they think is the way all right-thinking people should think. Thus, “the liberal fallacy”: Liberals imagine that everyone should share their opinions, and if others do not, there is something wrong with them. On matters of books and movies, they may give an inch, but if people have contrary opinions on political and social matters, it follows that the fault is with the others. (Commentary magazine)

Self-Serving Bias People tend to give themselves credit for successes but lay the blame for failures on outside causes. If the project is a success, it was all due to my hard work and leadership. If it’s a failure, it’s due to circumstances beyond my control, other people not pulling their weight etc.

Preserving one’s self-esteem These three errors are all aspects of preserving our self-esteem. You can see why this has an important evolutionary and psychological purpose. In order to live, we must believe in ourselves, our purposes and capacities, believe our values are normal and correct, believe we make a difference, that our efforts bring results. No doubt it is a necessary belief and a collapse of confidence and self-belief can lead to depression and possibly despair. But that doesn’t make it true. People should learn the difference between having self-belief to motivate themselves, and developing the techniques to gather the full range of evidence – including the evidence against your own opinions and beliefs – which will enable them to make correct decisions.

Representative error People estimate the likelihood of an event by comparing it to an existing prototype / stereotype that already exists in our minds. Our prototype is what we think is the most relevant or typical example of a particular event or object. This often happens around notions of randomness: people have a notion of what randomness should look like i.e. utterly scrambled. But in fact plenty of random events or sequences arrange themselves into patterns we find meaningful. So we dismiss them as not really random.  I.e. we have judged them against our preconception of what random ought to look like.

Ask a selection of people which of these three sets of six coin tosses where H stands for heads, T for tails is random.

  1. TTTTTT
  2. TTTHHH
  3. THHTTH

Most people will choose 3 because it feels random. But of course all three are equally likely or unlikely.

Hindsight In numerous experiments people have been asked to predict the outcome of an event, then after the event questioned about their predictions. Most people forget their inaccurate predictions and misremember that they were accurate.

Overconfidence Most professionals have been shown to overvalue their expertise i.e. exaggerate their success rates.


Statistics

The trouble with this and Paulos’s books is that the entire area of statistics is separate and distinct from errors of thought and cognitive biases. I.e. you can imagine someone who avoids all of the cognitive and psychological errors named above, but still makes howlers when it comes to statistics simply because they’re not very good at it.

This is because the twin areas of Probability and Statistics are absolutely fraught with difficulty. Either you have been taught the correct techniques, and understand them, and practice them regularly (and both books demonstrate that even experts make howling mistakes in the handling of statistics and probability) or, like most of us, you have not.

As Sutherland points out, most people’s knowledge of statistics is non-existent. Since we live in a society whose public discourse i.e. politics, is ever more dominated by statistics…

Errors in estimating probability or misunderstanding samples, opinion polls and so on are probably a big part of irrationality, but I felt that they’re so distinct from the psychological biases discussed above, that they almost require a separate volume, or a separate ‘part’ of this volume. Briefly, common mistakes are:

  • too small a sample size
  • biased sample
  • not understanding that any combination of probabilities is less likely than either on their own, which requires an understanding of base rate or a priori probability
  • the law of large numbers – the more a probabilistic event takes place, the more likely the result will move towards the theoretical probability
  • be aware of the law of regression to the mean
  • be aware of the law of large numbers

Gambling

This is even more true of gambling. It is a highly specialised and advanced form of probability applied to games which have been pored over by very clever people for centuries. It’s not a question of a few general principles, this is a vast, book-length subject in its own right. Some points that emerge:

  • always work out the expected value of a bet i.e. the amount to be won times the probability of winning it

The two-by-two box

It’s taken me some time to understand this principle which is given in both Paulos and Sutherland.

When two elements with a yes/no result are combined, people tend to look at the most striking correlation and fixate on it. The only way to avoid the false conclusions that follow from that is to draw a 2 x 2 box and work through the figures.

Here is a table of 1,000 women who had a mammogram because their doctors thought they had symptoms of breast cancer.

Women with cancer Women with no cancer Total
Women with positive mammography 74 110 184
Women with negative mammography 6 810 816
80 920 1000

Bearing in mind that a conditional probability is saying that if X and Y are linked, then the chances of X, if Y, are so and so – i.e. the probability of X is conditional on the probability of Y – this table allows us to work out the following conditional probabilities:

1. The probability of getting a positive mammogram or test result, if you do actually have cancer, is 74 out of 80 = .92 (out of the 80 women with cancer, 74 were picked up by the test)

2. The probability of getting a negative mammogram or test result and not having cancer, is 810 out of 920 = .88

3. The probability of having cancer if you test positive, is 74 out of 184 = .40

4. The probability of having cancer if you test negative, is 6 out of 816 = .01

So 92% of women of women with cancer were picked up by the test. BUT Sutherland quotes a study which showed that a shocking 95% of doctors thought that this figure – 92% – was also the probability of a patient who tested positive having the disease. By far the majority of US doctors thought that, if you tested positive, you had a 92% chance of having cancer. They fixated on the 92% figure and transposed it from one outcome to the other, confusing the two. But this is wrong. The probability of a woman testing positive actually having cancer is given in conclusion 3 – 74 out of 184 = 40%. This is because 110 out of the total 184 women tested positive, but did not have cancer.

So if a woman tested positive for breast cancer, the chances of her actually having it are 40%, not 92%. Quite a big difference (and quite an indictment of the test, by the way). And yet 95% of doctors thought that if a woman tested positive she had a 92% likelihood of having cancer.

Sutherland goes on to quote a long list of other situations where doctors and others have comprehensively  misinterpreted the results of studies like this, with varied and sometimes very negative consequences.

The moral of the story is if you want to determine whether one event is associated with another, never attempt to keep the co-occurrence of events in your head. It’s just too complicated. Maintain a written tally of the four possible outcomes and refer to these.


Deep causes

Sutherland concludes the book by speculating that all the hundred or so types of irrationality he has documented can be attributed to five fundamental causes:

  1. Evolution We evolved to make snap decisions, we are brilliant at processing visual information and responding before we’re even aware of it. Conscious thought is slower, and the conscious application of statistics, probability, regression analysis and so on is very slow and laborious. Most people never acquire it.
  2. Brain structure As soon as we start perceiving, learning and remembering the world around us brain cells make connections. The more the experience is repeated, the stronger the connections become. Routines and ruts form, which are hard to budge.
  3. Heuristics Everyone develops mental short-cuts, techniques to help make quick decisions. Not many people bother with the laborious statistical techniques for assessing relative benefits which Sutherland describes.
  4. Failure to use elementary probability and elementary statistics Ignorance is another way of describing this, mass ignorance. Sutherland (being an academic) blames the education system. I, being a pessimist, attribute it to basic human nature. Lots of people just are lazy, lots of people just are stupid, lots of people just are incurious.
  5. Self-serving bias In countless ways people are self-centred, overvalue their judgement and intelligence, overvalue the beliefs of their in-group, refuse to accept it when they’re wrong, refuse to make a fool of themselves in front of others by confessing error or pointing out errors in others (especially the boss) and so on.

I would add two more:

Suggestibility. Humans are just tremendously suggestible.

Say a bunch of positive words to test subjects, then ask them questions on an unrelated topic: they’ll answer positively. Take a different representative sample of subjects and run a bunch of negative words past them, then ask them the same unrelated questions, and their answers will be measurably more negative.

Ask subjects how they get a party started and they will talk and behave extrovert to the questioner. Ask them how they cope with feeling shy and ill at ease at parties, and they will tend to act shy and speak quieter. The initial terms or anchor defines the ensuing conversation.

In one experiment a set of subjects were shown one photo of a car crash. Half were asked to describe what they think happened when one car hit another; the other half were asked to describe what they thought happened when one car smashed into the other. The ones given the word ‘smashed’ gave much more melodramatic accounts. Followed up a week later, the subjects were asked to describe what they remembered of the photo. The subjects given the word ‘hit’ fairly accurately described it, whereas the subjects given the word ‘smashed’ invented all kinds of details like a sea of broken glass around the vehicles which simply wasn’t there, which their imaginations had invented, all at the prompting of one word.

Many of the experiments Sutherland quotes demonstrate what you might call higher-level biases: but underling many of them is this simple-or-garden observation, that people are tremendously easily swayed, by both external and internal causes, away from the line of cold logic.

Anthropomorphism Another big underlying cause is anthropomorphism, namely the attribution of human characteristics to objects, events, chances, odds and so on. In other words, people really struggle to accept the high incidence of random accidents. Almost everyone attributes a purpose or intention to almost everything that happens. This means our perceptions of almost everything in life are skewed from the start.

During the war Londoners devised innumerable theories about the pattern of German bombing. After the war, when Luftwaffe records were analysed, it showed the bombing was more or less at random.

The human desire to make sense of things – to see patterns where none exists or to concoct theories… can lead people badly astray. (p.267)

Suspending judgement is about the last thing people are capable of. People are extremely uneasy if things are left unexplained. Most people rush to judgement like water into a sinking ship.

Cures

  • keep an open mind
  • reach a conclusion only after reviewing all the possible evidence
  • it is a sign of strength to change one’s mind
  • seek out evidence which disproves your beliefs
  • do not ignore or distort evidence which disproves your beliefs
  • never make decisions in a hurry or under stress
  • where the evidence points to no obvious decision, don’t take one
  • learn basic statistics and probability
  • substitute mathematical methods (cost-benefit analysis, regression analysis, utility theory) for intuition and subjective judgement

Comments on the book

Out of date

Irrationality was first published in 1992 and this makes the book dated in several ways (maybe this is why the first paperback edition was published by upmarket mass publisher Penguin, whereas the most recent edition was published by the considerably more niche publisher, Pinter & Martin).

In the chapter about irrational business behaviour he quotes quite a few examples from the 1970s and the oil crisis of 1974. These and other examples – such as the long passage about how inefficient the civil service was in the early 1970s – feel incredibly dated now.

And the whole thing was conceived, researched and written before there was an internet or any of the digital technology we take for granted nowadays. Can’t help make wonder how the digital age has changed or added to the long list of biases, prejudices and faulty thinking he gives, and what errors of reason have emerged specific to our fabulous digital technology.

Grumpy

But it also has passages where Sutherland extrapolates out to draw general conclusions and some of these sound more like the grumblings of a grumpy old man than anything based on evidence.

Thus Sutherland whole-heartedly disapproves of ‘American’ health fads, dismisses health foods as masochistic fashion and is particularly scathing about jogging. He thinks ‘fashion’ in any sphere of life is ludicrously irrational. He is dismissive of doctors who he accuses of rejecting statistical evidence, refusing to share information with patients and wildly over-estimating their own diagnostic abilities.

He thinks the publishers of learned scientific journals are more interested in making money out of scientists than in ‘forwarding the progress of science’ (p.185). He thinks the higher average pay that university graduates tend to get is unrelated to their attendance at university and more to do with having well connected middle and upper middle class parents, and thus considers the efforts of successive Education Secretaries to introduce student loans to be unscientific and innumerate (p.186). He criticises Which consumer magazine for using too small samples in its testing (p.215). In an extended passage he summarises Leslie Chapman’s blistering (and very out of date) critique of the civil service, Your Disobedient Servant published in 1978 (pp.69-75).

He really has it in for psychoanalysis which he accuses of all sorts of irrational thinking such as projecting, false association, refusal to investigate negative instances, failing to take into account the likelihood that the patient would have improved anyway, and so on. Half way through the book he gives a thumbnail summary:

Self-deceit exists on a massive scale: Freud was right about that. Where he went wrong was in attributing it all to the libido, the underlying sex drive. (p.197)

In other words, the book is liberally sprinkled with Sutherland’s own personal opinions, which sometimes risk giving it a crankish feel.

On the other hand it’s surprising to see how some hot button issues haven’t changed at all. In the passage about the Prisoners’ Dilemma, Sutherland takes as a real life example the problem the nations of the world were having in 1992 in agreeing to cut back carbon dioxide emissions. Sound familiar?

He also states that the single biggest factor undermining international co-operation was America’s refusal to sign global treaties to limit global warming. In 1992! Plus ça change.

Against stupidity the gods themselves contend in vain

And finally, these are the mistakes made by the most intelligent and best educated among us, people trained to assess and act on evidence.

Neither this nor John Allen Paulos’s books take into account the obvious fact that lots of people are stupid. They begin with poor genetic material, are raised in families where no-one cares about education, are let down by poor schools, and are excluded or otherwise demotivated, with the result that :

  • the average reading age in the UK is 9
  • about one in five Britons (over ten million) are functionally illiterate, and probably about the same rate innumerate

which all adds to the general festival of idiocy.

Trying to keep those pesky cognitive errors at bay (in fact The Witch by Pieter Bruegel the Elder)

Trying to keep those pesky cognitive errors at bay (otherwise known as The Witch by Pieter Bruegel the Elder)


Related link

Reviews of other science books

Cosmology

Environment / human impact

Genetics

  • The Double Helix by James Watson (1968)

Maths

Particle physics

Psychology

Planet of the Apes by Pierre Boulle (1963)

Extraordinary the impact this book had. First a series of five movies 1968-73, then a TV series (1974-5). In recent years the movie franchise rebooted, first with Tim Burton’s 2001 version and then again, with a new sequence of films (Rise of the Planet of the Apes 2011, Dawn of the Planet of the Apes 2014, War for the Planet of the Apes in 2017). Just these three movies alone have grossed over $2 billion.

And ever since the original movie there’s been an impressive array of comic books and graphic novels, computer games, toys and theme park rides (!).

Why is the story so powerful? What is its hold?

Frame story – Jinn and Phyllis

It is thousands of years in the future. The planets have been colonised and interstellar travel is common. Many travel on business in fast rockets. Jinn and Phyllis are more like tourists in space, dallying in a sealed sphere whose sails can be set larger or smaller to catch the solar winds coming from the stars and drift around the universe. One day they see an object flying by, change course to collect it, and find it is a message in a bottle, a glass bottle. Inside it are sheafs of paper with a long narrative scrawled on them.

Jinn reads out this narrative which makes up the main body of the text.

The narrative of Ulysse Mérou

This text is written by the journalist Ulysse Mérou in the year 2500. He has been invited to join the space expedition led by Professor Antelle, and accompanied by his assistant Arthur Levain, which is travelling to the nearest star, the mega-star Betelgeuse.

(Although published in 1963 everything about the space trip reminds me of H.G. Wells. We are not told anything about the design of the ship or nature of the propulsion system (always the snag in space travel sci-fi). Antelle is travelling in a ship he designed and built himself, almost as if he’d done it in a shed at the bottom of the garden. And they choose Mérou to accompany them because he is good at chess. In other words the whole story has the charming amateurism of Conan Doyle’s Professor Challenger stories or Well’s earlier science fantasies, many light years remote from the reality of the vast army of technicians backed up by the state, which would be required just to take a man to the moon later the same decade.)

It takes two years to travel to Betelgeuse, one year to accelerate to nearly the speed of light, a few days travelling at phenomenal speed, then a year slowing back down. As any reader of science fiction should have picked up, the closer to the speed of light you travel, the more time slows down relative to objects and people travelling at normal speeds i.e. people on Earth. Thus, while the trip to Betelgeuse will only take the trio two years, something like 350 years will have passed on Earth. Everyone they know and everything they know will have died and changed utterly.

Arrival on Soror

When they get to Betelgeuse, they discover there are four planets circling the super-star, and one of them, surprise surprise, is the same distance from the big star as Earth from the sun, and appears to have the same gravity and atmosphere as our home planet.

Our trio takes to one of the space ‘launches’ built into the main spaceship (no description whatsoever of what it looks like or how it works) and shuttle down to the planet, skimming over what appear to be cities, with buildings laid out along streets, before landing in a clearing in a ‘jungle’.

Once again, it comes as no surprise that the air on the planet is breathable – made of oxygen and nitrogen pretty much the same ratio as on Earth.

(This is as wildly improbable as when Cavor and Bedford unscrew the door of their sphere in First Men In The Moon and discover that the moon has a breathable atmosphere, if rather thin. Monkey Planet is not hard science fiction of the heavily factual Arthur C. Clarke variety. We are more in the realm of science fable.)

They christen the planet Soror, sister to our Earth.

So the three Frenchmen get out, stretch, wander around, see birds flying overhead, are struck by how similar the trees and flower are and discover a waterfall, so they strip off and swim and wash. It feels like a film already. You can imagine the tropical sunlight dappling through exotic leaves onto the sun-kissed bodies of our three hunky heroes.

Nova

At which point there is a Robinson Crusoe moment, as they spot a human footprint in the sand. A woman’s footprint by the shape of it. And then she appears.

Being a man, Boulle casts this first alien human as a woman, and being a Frenchman he imagines her a naked woman – and the whole thing veers towards the crudest pulp sci-fi when he describes her as a golden-skinned, physically perfect woman, a goddess perfect in form and feature etc.

I shall never forget the impression her appearance made on me. I held my breath at the marvellous beauty of this creature from Soror, who revealed herself to us, dripping with spray, illuminated by the blood-red beams of Betelgeuse. it was a woman – a young girl, rather, unless was a goddess. She boldly asserted her femininity in the light of this monstrous sun, completely naked and without any ornament other than her hair which hung down to her shoulders…Standing upright, leaning forwards, her breasts thrust out towards us, her arms raised slightly backwards in the attitude of a diver…It was plain to see that the woman, who stood motionless on the ledge like a statue on a pedestal, possessed the most perfect body that could be conceived on earth. (p.23)

Mérou christens her Nova, and she strikes this reader as being the oldest pulp fiction trope in the world – the pure, innocent, scantily-dressed (in fact, naked) damsel, who will, later on in the book, be threatened by great big hairy apes – with only our gallant narrator to protect her.

But, puzzlingly, it quickly becomes clear that Nova cannot talk and is scared when they laugh or talk. She can only make quick grunting noises, almost like an ape. In fact the three Frenchmen’s smiles and laughter scare her off.

Next day they go frolic in the waterfall again, and the perfect woman returns, with a man, fine figured but also mute. More mute humans assemble. When our trio put on their clothes, the humans recoil in fear and disgust. Walking back to the spaceship our heroes are attacked from all sides by quite a crowd of humanoids, as many as a hundred, who rip and tear their clothes off. Then the mob of animal-humans proceeds to break into the space launch and destroy, rip and tear apart everything they can get their hands on. But not like human vandals working systematically. More like animals, tearing and worrying and biting at something they don’t understand.

Destruction of the ship

Having trashed the ship, the savage humans drag our heroes back to their village. Except it doesn’t even have huts, is more a random scattering of makeshift shelters, a few branches leaning against trees, just as the great apes make. Nova, as you might have guessed, has formed a bond with our gallant narrator and comes and snuggles up against him, again more like an animal seeking warmth than an intelligent partner.

The manhunt

The next morning they are all woken by alarming sounds, ululations and shouts, yes shouts, language, as of humans. The humanoids run round in a panic and set off in the opposite direction, Mérou fleeing with them.

He begins to realise the people coming behind are beaters and the humanoids are being driven – and then he hears shots, gunshots. They are being driven towards hunters out for some sport.

Mérou comes to a break in the tall grass and is flabbergasted to see an enormous gorilla wearing clothes and wielding a shot gun, taking shots at the terrified humans as they emerge from the long grass into this break.

Mérou watches a human burst out of the grass into the open area and the gorilla carefully take aim and shoot him. He hands his gun to a smaller chimpanzee, behind him, also dressed, who recharges it with cartridges and returns it to the gorilla. Mérou’s head is spinning at what this seems to say about the planet they’ve arrived on – the traditional roles of ape and man appear to have been completely reversed.

Mérou waits till the gorilla fires (hitting another human) and hands the gun over to be reloaded, and then takes his chance. He runs across the break of open ground and into the long grass on the other side. But it is only to stumble into a trap of mesh netting which scoops him and other humans up into a huge struggling bundle, waiting for the master apes to come.

Cover of an audiobook of Monkey Planet which captures the terror of the hunt, artwork by Harry Schaare

Cover of an audiobook of Monkey Planet which captures the terror of the hunt, artwork by Harry Schaare (1964)

The human laboratory

Mérou is thrown into a cage along with other naked humans. He watches in disbelief as the gorillas return from the hunt and lay out the killed humans neatly and artistically, smoothing down ruffled hair as a human hunter would smooth down an animal’s fur or feathers, arranging the corpses in aesthetic poses.

Mérou is still reeling from the way the gorillas are wearing clothes, normal clothes, hunting clothes. One sneezes and brings a handkerchief out of his breeches to blow his nose. The cages are on wheels and are pulled by a sort of tractor back to a sort of hunting lodge where the female gorillas are waiting, wearing dresses and hats. A photographer turns up and snaps the hunter gorillas posing by their kills, with their proud womenfolk on their arms. Mérou feels as if he’s going mad.

Finally the hunters clamber onto some of the tractors, and along with those pulling cages full of human captives, they set off some distance to arrive at a town. Mérou observes a grocer pulling down his blind as he opens up shop. They have motor cars, banks, shops. It all sounds like a French provincial town except… populated by apes!

Mérou is unloaded at a hospital-like building and ushered down a corridor into a cage, one of many containing single or pairs of humans bedded on straw. Over the weeks it becomes clear that they are lab animals, kept to be experimented on. The experiments are mostly behavioural i.e. the Pavlov experiment of ringing a bell and offering food to make the animals salivate, eventually just ringing the bell to produce the same reaction.

The warders – two gorillas named Zoram and Zanam – hang fruit from the roof of a cage, then put four cubes in the cage. Only Mérou has the intelligence to realise that if you stack the four boxes on top of each other you can simply step up them and reclaim the fruit. The other humans watch him with complete incomprehension. By now he has realised that the humans really are animals without the slightest flicker of intelligence, let alone intellectual ability.

Then there is observation of mating rituals. The apes place male and female subjects in the same cage and observe their mating ritual – which amounts to the male circling round the female with ornate steps… before eventually pouncing on his hypnotised prey.

Mérou swears he won’t sink to the same level when they place Nova in his cage (yes, Nova has miraculously survived the manhunt and was thrown into a tractor cage and was transported to the same ‘hospital’ and has, by happy coincidence, now been thrown into Mérou’s cage). But when he fails to perform and they take her away and replace her with an old crone, and he sees another hulking male preparing to mate with Nova, Mérou changes his mind, makes a fuss and Nova is restored to him, at which point… well… when on Soror, do as the Sororians do.

(The fact that Mérou mates with Nova fulfils the soft porn, pulpy sexual promise which has been latent in the story ever since the trio sighted her splendid naked body by the waterfall. It is as inevitable as falling off a log.)

(Incidentally, Mérou saw the body of the professor’s assistant, Arthur Levain, stretched out in the array of ‘kill’ at the hunting lodge. Of the professor, he has seen no sign.)

Befriending Zira

But it isn’t just the gorillas who conduct these experiments. A female chimpanzee attends with a pen and notebook. Over the course of her visits, Mérou manages to impress on her his intelligence, first of all parroting back to her some of the simian language, which he has begun to pick up. But then, in a decisive move, Mérou seizes her pen and notebook and draws a sequence of geometric shapes, hands it back to her and she draws some more, and gives it back to him who draws some more.

She is deeply shaken, but begins – when the gorillas’ attention is distracted by other prisoners – to talk to him. She is Zira. Her fiancé is Cornelius. She poo-poos the pompous orangutan, Dr Zaius, who has come to visit the lab several times, obviously the head of the institute who orders around the gorillas and ignores Zira’s comments.

Zira lends Mérou some books which he hides and reads at night. He is making progress in the simian language and is nearly fluent. He learns that Soror has only one world government, divided into three chambers, one each for the chimps, orangs and gorillas. The gorillas are still the most physical among the apes, a legacy from the days when they ruled, and they’re the ones who implement and carry out discoveries. The orangutans are the ’embodiment of science’ and wisdom except that, in Zira’s opinion, it is a hidebound, out-of-date science. According to Zira all the important discoveries have been made by the chimps.

(We know from our own planet that the human race is split into thousands of cultures and languages, with wildly different levels of technical achievement; and yet so many science fiction stories fly in the face of all this evidence and land on planets where this is just one World Government, or one Ruler, and one language, which the human arrivals quickly pick up. it’s one of the most flagrant ways in which science fiction is so disappointingly simple-minded and simplistic.)

Zira gets permission one day to take Mérou for a walk (obviously on the end of a leash and naked – he is a pet after all) to a park where she introduces him to her fiancé, Cornelius. by this stage Mérou has used drawings to persuade Zira that he is in fact from a different planet in a different solar system, and now his explanation in fluent simian persuades Cornelius as well.

But, the chimps explain, the orangutans are resistant to all change, they still teach that Soror is the centre of the universe and Zaius refuses to accept that Mérou is anything more than a performing pet. And Mérou is in danger. They have extensive labs in which they conduct experiments on the brains of humans, sometimes while they’re conscious – something to be avoided.

Mérou addresses the conference and wins his freedom

Cornelius and Zira come up with a plan: there is soon to be a scientific conference. Dr Zaius wants to present Mérou as an example of man’s mimetic abilities, as a kind of performing pet. There will be an immense convocation of scientists, and journalists, and members of the public. It will be a perfect opportunity for Mérou to step forward and address public opinion directly.

And this is exactly what he does. Mérou is brought onstage as a specimen for Zaius to put through his paces but astonishes everyone by taking the microphone, bowing, making polite reference to the chair of the meeting and proceeding to make a long, pompous and respectful speech to the members of the academy explaining that he is an astronaut from the planet Earth (drawing a map of Earth’s location). Now not even Zaius can deny the fact that Mérou is an intelligent, autonomous human being, something which defies all their science.

This understandably causes an uproar and, over the next few days, Mérou is released from his captivity, allowed to get dressed and meets other scientists to discuss his story.

Mérou can now be taken on a tour of simian society and discovers it to be in almost every respect identical to human: there are theatres, athletic games and sports contests. He is taken to the zoo and, unwisely, asks to see the human cages. There he is horrified to discover Professor Antelle, naked and dishevelled like the other human-animals, begging for food from the child apes who throw bits of cake through the bars.

Mérou begs for a personal meeting with the professor. Cornelius uses Mérou’s new-found celebrity to persuade the director of the zoo to allow Mérou a meeting with the professor, but we are horrified to see that Antelle really has descended to the level of the animals. There is nothing behind his eyes. There isn’t a flicker of recognition as Mérou talks to him. In fact this section ends, hauntingly, with Antelle lifting his head and letting out a prolonged animal howl.

The archaeological site on the other side of the world

Mérou now comes to learn more about Cornelius’s research and to share his investigation into the origins of ape society. The most salient fact about it is the way it appears to have stagnated at the same technological level for centuries, indeed millennia. Ape records stretch back some 10,000 years but then there is a complete blank. Mérou himself has spent hours speculating about how the situation came about – why are the apes in charge and humans voiceless, unintelligent animals? Is it fluke? Accident? At some point of evolution could it have gone either way and, on Earth went one way, and here went another?

Their speculations are brought to a climax by two incidents:

1. He is invited to an archaeological site on the other side of the world. (He flies there in a jet, a detail which is swiftly glossed over but gives you an indication of how different Boulle’s vision of ape society is from the ape society depicted in all the movies: in the movies it is a society reduced to medieval level, everyone rides on horses, the townships are little more than mud huts; in Boulle’s vision, ape society is exactly like human society, with cars driving along busy city streets lined with shops and, as here, jet planes taking off from airports.) Cornelius’s colleagues are excavating a settlement which appears to date from before the apes’ earliest records of 10,000 years ago. And they have found something seismic – a doll, a human doll, which is wearing not only the vestiges of clothes, but which, when pressed, says the word ‘Papa’. It is a fragment, but a fragment which confirms Cornelius and Mérou’s suspicions. The humans came first.

2. The second incident is when Cornelius takes Mérou to see the brain experiments the apes conduct on humans. The first set of these are genuinely horrifying, sticking electrodes in human brains to observe the flexing of various muscles or to bring on epileptic fits. This sequence is the clearest example of the way Boulle uses his fable to argue against cruelty to animals. Mérou is sickened and eventually cries out in anger at the torture he’s seeing his fellow humans subjected to.

The voices of history

But then there is an extraordinary scene where Cornelius takes us to nother room where electrodes have been applied to the brains of two humans. This operation makes the male patient talk, although only broken fragments of phrases he’s obviously overheard in the lab and cages. Still, it is empirical proof that humans can talk.

But it’s the woman specimen who is the real prize. Applying electrodes to her brain unlocks the collective memory of the race.

In a wildly unscientific and implausible manner which is, nonetheless, fantastically imaginatively powerful, through this woman as via a clairvoyant, we hear the voices of the humans from that long-ago era, before 10,000 years ago, who one by one record the fateful sequence of events which led to the downfall of mankind and the rise of the apes.

Various voices dramatise and comment on the way the human race became lazy and unmotivated, while the apes they had trained to be servants banded together, learned to communicate and speak simple phrases, were heard muttering together at nights. A woman tearfully admits she has handed over her house to the gorilla who used to be the maid and cleaner, and has come to the ‘camp’ of humans outside the city. Another laments the passivity and lassitude of humans. A final one describes in terror hearing the approach of a hunt of apes who don’t even bother to chase them with guns any more, but simply use whips! The woman’s story ends.

Cornelius and Mérou look at each other. So, it is as they thought. Ape culture has stayed more or less the same for millennia because it is a copy of the human culture which preceded it.

The moral of the story

If there is a moral to the story it is here, and it is about the peril to the human race of losing its drive and purpose and will to live. This kind of thing routinely crops up in mid-century science fiction although it is, I think, incomprehensible to us now. I think it was a warning frequently issued by ‘prophets’ in the West (America and Europe) against succumbing to materialism, consumerism and losing our souls, losing our thirst for the higher, intellectual life.

In fact Planet of the Apes taps into the anxiety about the Degeneration of the West which goes back at least as far Max Nordau’s bestseller, titled simply Degeneration, which was published in 1892 and which took French art and morality as demonstrating the degeneration and decline of the West. The notion that humanity got slaves (in this case, apes) to do their work for them, and became too lazy to maintain their place at the top of the tree, has a long lineage.

As far as I can see, the West has utterly succumbed to consumer capitalism, everyone in the West is addicted to their phone and its apps and gadgets and wastes hours on endless social mediatisation. And yet the apocalypse has not followed: art is still created, more books and poems and plays than ever before are produced.

The ‘collapse of civilisation’ which Boulle appears to be warning about never came.

Nova has a baby and they escape

Several scenes earlier Zira had told Mérou that Nova is pregnant with his child.

Other episodes intervene, such as the flight to the archaeological site, seeing the vivisection experiments on the humans, trying to get through to Professor Antelle whose purpose is to make the nine months fly past until Nova has her baby. Mérou christens the baby boy Sirius.

At this point things become really dangerous for Mérou, Nova and the baby. Zira and Cornelius tell him that Dr Zaius and the orangutans are winning the argument at a senior level. They are arguing that Mérou and Sirius represent an existential threat to ape rule. Already the humans in the cages where Mérou was first kept are noticeably respectful of him when he makes occasional visits back there, despite wearing clothes, something which made them shriek with horror when they first saw him. As if he is in the early stages of becoming their leader.

Similarly, Nova, after all this time in contact with Mérou, has learned to make a few sounds and the first tentative attempts to smile, to make facial expressions, something which was unthinkable when we first met her.

And, as the months go past, the infant Sirius begins to make articulate noise, not just animal cries. Cornelius warns Mérou that the orangs are persuading the gorillas to eliminate all three of them, carry out brain experiments on them, remove their frontal lobes, anything to eliminate the threat.

The pace of the narrative speeds up here, maybe because it’s becoming so wildly implausible, and Mérou writes increasingly in the present tense, drawing the reader directly into the fast-moving sequence of events.

Cornelius now tells Mérou that the apes are about to launch a manned probe into space, literally ‘manned’ with a man, a woman and a child, who will be trained to carry out basic tasks, so the apes can study the impact of them of space radiation, weightlessness etc.

Cornelius knows the chimpanzee running the programme. He’s persuaded him to do a switch.

And so it unfolds. In half a page Mérou describes how he, Nova and Sirius are smuggled aboard the ape probe, how it is launched into space, how he is able to navigate it to the master spaceship in which the three men originally travelled from Earth over a year earlier, manoeuvres it into the ‘bay’ from which the ‘launch’ had departed, the air doors closed, robots take over, and then he steers the spaceship out of orbit round Soror, and back to Earth at nearly light speed.

The punchline

And here comes the part of the book which, if you’re open and receptive and young enough, packs a killer punch.

Mérou steers the spaceship into earth orbit, round the earth towards Europe, then down through the clouds towards France, and finally brings it gently to land on the airfield at Orly airport.

Turns the engines off and sits in silence. Then all three clamber out and watch as a fire engine heads across the runway towards this unexpected arrival.

As explained at the start of the book, and reprised on the flight home, travelling at near light speeds means that while only two years pass for Mérou, Nova and Sirius, something like seven hundred years have passed back on Earth. Given this immense passage of time Mérou is surprised there seem to have been so few changes. As they flew over Paris he noticed the Eiffel Tower was still there. Now he notices that the airfield is in fact a bit rusty and dotted with patches of grass, as if rundown.

And he’s surprised that the fire engine that comes wailing towards them is a model familiar from his own time. Has nothing changed? Surprising.

As the engine draws up fifty yards from them the setting sun is reflected in its windscreen so Mérou can only dimly make out the two figures inside. They climb down with their backs towards him, also obscured by the long grass here at the edge of the airstrip. Finally one emerges from the long grass. Nova screams, picks up Sirius and sets off running back towards the ship.

The fireman is… a gorilla!

In a flash Mérou – and the reader – grasps the situation: here, as on Soror, humans cultivated the apes, made them servants, taught them the basics of language, then got lazier and more dependent on their servants who, at some stage, overthrew their human masters, reducing them to voiceless slaves, though themselves proving incapable of improving on human technology – this terrible fate has happened on Earth, too!

Frame story Jinn and Phyllis

Well. This is how the narrative in a bottle ends and Jinn stops reading to Phyllis. They are both silent for a long time. Then they both break out in agreement. Humans! Capable of speech and thought! It was a good yarn but, on this point, too far-fetched.

Humans talking! What a ridiculous idea. And Jinn uses his four hands to trim the sails of their cosy little space-sphere, and Phyllis applies some make-up to her cute little chimpanzee muzzle. We now realise that they, too, are apes. Mérou’s narrative was from the last intelligent human on either planet. The triumph of the apes is complete.

Reasons for success

I think it is the thoroughness of the fable which makes it so enduring. Boulle has really thought through the implications of his reversal, of the world turned upside down.

Details of the spaceship and its advanced rockets are trivia compared with the archetypal power of the story. What if… What if the entire human race is overthrown and reduced to a state, not even of savagery, but lower than that, dragged right back to brute animality?

I think the fable addresses a deep anxiety among thinking humans that the condition of reason and intellect and mentation are so fragile and provisional. And at the same time sparks the familiar thrill which apparently resonates with so many readers and cinema goers, at witnessing the overthrow and end of the human race. In my (Freudian) interpretation, reflecting a profound, mostly unconscious death wish, which many many people thrill to see depicted in gruesome detail on the screen and then, primitive urges sated, return to our humdrum workaday lives.

Style and worldview

It has gone down in pop culture lore that the first words the astronaut hero of the first Planet of the Apes movie (played by Charlton Heston) utters to an ape is, ‘Take your stinking paws off me you damn dirty ape!’

Whereas the first words Ulysse Mérou addresses to an ape, are spoken to one of the gorilla wardens feeding him and supervising him once he has arrived at the human laboratory-cages: ‘How do you do? I am a man from Earth. I’ve had a long journey.’

Obviously, one is a movie, an American movie, and the other is a novel, a French novel, but the two moments can be taken as symbolic of the differing worldviews of the two cultural artefacts. The French novel is full of high-flown sentiments about the nature of humanity and the human spirit. Like Olaf Stapledon back in the 1930s, Boulle considers human intelligence to be a kind of peak of creation, something of special importance and significance, hence his shock at finding the humans mute animals is all the greater. His sense of the unparalleled importance of humanity is tied to his sense of his own importance, self-love, a concept so French that we have imported their phrase for it – amour propre – ‘a sense of one’s own worth; self-respect’. This is wryly expressed in the scene where he finds himself having to copy the mating ritual of the animal-humans:

Yes, I, one of the kings of creation, started circling round my beauty; I, the ultimate product of millenary evolution, I, a man… I, Ulysse Mérou, embarked like a peacock round the gorgeous Nova. (p.76)

Nowadays, I take it there is a much more realistic and widespread feeling that humans are not particularly important, that plenty of other species turn out to be ‘intelligent’ and communicate among themselves, and many people share my view that humans are, in fact, a kind of pestilential plague on the planet, which we are quite obviously destroying.

But this book, from 55 years ago, although it is about man’s fall into a bestial condition, nevertheless is full of rhetoric about the special, privileged position of intelligence in the universe, and is full of a very old-fashioned kind of triumphalist rhetoric about the ongoing march of intelligence.

Here is Cornelius arguing with Mérou, arguing that the rise of the apes was inevitable because they have a loftier destiny:

‘Believe me, the day will come when we shall surpass men in every field. It is not by accident, as you might imagine, that we have come to succeed him. This eventuality was inscribed in the normal course of evolution. Rational man having had his time, a superior being was bound to succeed him, preserve the essential results of his conquests and assimilate them during a period of apparent stagnation before soaring up to greater heights.’ (p.148)

The idea of a Great Chain of Being, a hierarchy of intelligence which you can imagine as a sort of ladder whose occupants become increasingly intelligent as you climb up it, is a basic element of the Renaissance worldview, going back through medieval texts, deriving from the systematising of late classical followers of Plato. In the Middle Ages it became the ladder which led up through the Natural World, to man, then the angels, then to God himself.

When science came along in the 19th century the idea of there being an up and a down to life on earth, of a forwards and upwards drive in evolution, was taken over by positivists and lingered long into twentieth century political, social and fictional rhetoric.

It’s gone now. It was associated with the notion of a hierarchy of races (wise whites at the top), of genders (wise men at the top), and class (the wise Oxbridge-educated at the top), all of which began to be questioned and undermined soon after Boulle’s book was published.

Also, in biology and evolution, there is now no sense at all that humans are somehow ‘superior’ to all other animals because (in the tired old trope) we produced a Shakespeare or a Mozart. Watch any David Attenborough nature documentary and you’ll see that biology, for some decades now, assumes that everything is highly evolved, where highly evolved means that the organism fits perfectly into the niche it occupies.

The notion that ‘evolution’ means some vague, half-religious drive ‘upwards’ towards greater and greater intelligence has been replaced by a notion of ‘evolution’ which is a computer-aided understanding of the myriad complexities of DNA and genetics, and how they act on organisms to ensure survival. There is no ‘onwards and upwards’. There is merely change and adaptation, and that change and adaptation has no innate moral or spiritual meaning whatsoever.

Thus reading Monkey Planet is, like reading most science fiction, not to be transported forwards into a plausible future, but the opposite – to travel backwards in time, to the completely outdated social and intellectual assumptions of the 1940s and 50s.


Related links

Other science fiction reviews

1888 Looking Backward 2000-1887 by Edward Bellamy – Julian West wakes up in the year 2000 to discover a peaceful revolution has ushered in a society of state planning, equality and contentment
1890 News from Nowhere by William Morris – waking from a long sleep, William Guest is shown round a London transformed into villages of contented craftsmen

1895 The Time Machine by H.G. Wells – the unnamed inventor and time traveller tells his dinner party guests the story of his adventure among the Eloi and the Morlocks in the year 802,701
1896 The Island of Doctor Moreau by H.G. Wells – Edward Prendick is stranded on a remote island where he discovers the ‘owner’, Dr Gustave Moreau, is experimentally creating human-animal hybrids
1897 The Invisible Man by H.G. Wells – an embittered young scientist, Griffin, makes himself invisible, starting with comic capers in a Sussex village, and ending with demented murders
1898 The War of the Worlds – the Martians invade earth
1899 When The Sleeper Wakes/The Sleeper Wakes by H.G. Wells – Graham awakes in the year 2100 to find himself at the centre of a revolution to overthrow the repressive society of the future
1899 A Story of the Days To Come by H.G. Wells – set in the same future London as The Sleeper Wakes, Denton and Elizabeth defy her wealthy family in order to marry, fall into poverty, and experience life as serfs in the Underground city run by the sinister Labour Corps

1901 The First Men in the Moon by H.G. Wells – Mr Bedford and Mr Cavor use the invention of ‘Cavorite’ to fly to the moon and discover the underground civilisation of the Selenites
1904 The Food of the Gods and How It Came to Earth by H.G. Wells – scientists invent a compound which makes plants, animals and humans grow to giant size, prompting giant humans to rebel against the ‘little people’
1905 With the Night Mail by Rudyard Kipling – it is 2000 and the narrator accompanies a GPO airship across the Atlantic
1906 In the Days of the Comet by H.G. Wells – a comet passes through earth’s atmosphere and brings about ‘the Great Change’, inaugurating an era of wisdom and fairness, as told by narrator Willie Leadford
1908 The War in the Air by H.G. Wells – Bert Smallways, a bicycle-repairman from Kent, gets caught up in the outbreak of the war in the air which brings Western civilisation to an end
1909 The Machine Stops by E.M. Foster – people of the future live in underground cells regulated by ‘the Machine’ until one of them rebels

1912 The Lost World by Sir Arthur Conan Doyle – Professor Challenger leads an expedition to a plateau in the Amazon rainforest where prehistoric animals still exist
1912 As Easy as ABC by Rudyard Kipling – set in 2065 in a world characterised by isolation and privacy, forces from the ABC are sent to suppress an outbreak of ‘crowdism’
1913 The Horror of the Heights by Arthur Conan Doyle – airman Captain Joyce-Armstrong flies higher than anyone before him and discovers the upper atmosphere is inhabited by vast jellyfish-like monsters
1914 The World Set Free by H.G. Wells – A history of the future in which the devastation of an atomic war leads to the creation of a World Government, told via a number of characters who are central to the change
1918 The Land That Time Forgot by Edgar Rice Burroughs – a trilogy of pulp novellas in which all-American heroes battle ape-men and dinosaurs on a lost island in the Antarctic

1921 We by Evgeny Zamyatin – like everyone else in the dystopian future of OneState, D-503 lives life according to the Table of Hours, until I-330 wakens him to the truth
1925 Heart of a Dog by Mikhail Bulgakov – a Moscow scientist transplants the testicles and pituitary gland of a dead tramp into the body of a stray dog, with disastrous consequences
1927 The Maracot Deep by Arthur Conan Doyle – a scientist, engineer and a hero are trying out a new bathysphere when the wire snaps and they hurtle to the bottom of the sea, there to discover…

1930 Last and First Men by Olaf Stapledon – mind-boggling ‘history’ of the future of mankind over the next two billion years
1938 Out of the Silent Planet by C.S. Lewis – baddies Devine and Weston kidnap Ransom and take him in their spherical spaceship to Malacandra aka Mars,

1943 Perelandra (Voyage to Venus) by C.S. Lewis – Ransom is sent to Perelandra aka Venus, to prevent a second temptation by the Devil and the fall of the planet’s new young inhabitants
1945 That Hideous Strength: A Modern Fairy-Tale for Grown-ups by C.S. Lewis– Ransom assembles a motley crew to combat the rise of an evil corporation which is seeking to overthrow mankind
1949 Nineteen Eighty-Four by George Orwell – after a nuclear war, inhabitants of ruined London are divided into the sheep-like ‘proles’ and members of the Party who are kept under unremitting surveillance

1950 I, Robot by Isaac Asimov – nine short stories about ‘positronic’ robots, which chart their rise from dumb playmates to controllers of humanity’s destiny
1950 The Martian Chronicles – 13 short stories with 13 linking passages loosely describing mankind’s colonisation of Mars, featuring strange, dreamlike encounters with Martians
1951 Foundation by Isaac Asimov – the first five stories telling the rise of the Foundation created by psychohistorian Hari Seldon to preserve civilisation during the collapse of the Galactic Empire
1951 The Illustrated Man – eighteen short stories which use the future, Mars and Venus as settings for what are essentially earth-bound tales of fantasy and horror
1952 Foundation and Empire by Isaac Asimov – two long stories which continue the future history of the Foundation set up by psychohistorian Hari Seldon as it faces attack by an Imperial general, and then the menace of the mysterious mutant known only as ‘the Mule’
1953 Second Foundation by Isaac Asimov – concluding part of the ‘trilogy’ describing the attempt to preserve civilisation after the collapse of the Galactic Empire
1953 Earthman, Come Home by James Blish – the adventures of New York City, a self-contained space city which wanders the galaxy 2,000 years hence powered by spindizzy technology
1953 Fahrenheit 451 by Ray Bradbury – a masterpiece, a terrifying anticipation of a future when books are banned and professional firemen are paid to track down stashes of forbidden books and burn them
1953 Childhood’s End by Arthur C. Clarke a thrilling narrative involving the ‘Overlords’ who arrive from space to supervise mankind’s transition to the next stage in its evolution
1954 The Caves of Steel by Isaac Asimov – set 3,000 years in the future when humans have separated into ‘Spacers’ who have colonised 50 other planets, and the overpopulated earth whose inhabitants live in enclosed cities or ‘caves of steel’, and introducing detective Elijah Baley to solve a murder mystery
1956 The Naked Sun by Isaac Asimov – 3,000 years in the future detective Elijah Baley returns, with his robot sidekick, R. Daneel Olivaw, to solve a murder mystery on the remote planet of Solaria
1956 They Shall Have Stars by James Blish – explains the invention – in the near future – of the anti-death drugs and the spindizzy technology which allow the human race to colonise the galaxy
1959 The Triumph of Time by James Blish – concluding story of Blish’s Okie tetralogy in which Amalfi and his friends are present at the end of the universe

1961 A Fall of Moondust by Arthur C. Clarke a pleasure tourbus on the moon is sucked down into a sink of moondust, sparking a race against time to rescue the trapped crew and passengers
1962 A Life For The Stars by James Blish – third in the Okie series about cities which can fly through space, focusing on the coming of age of kidnapped earther, young Crispin DeFord, aboard New York
1962 The Man in the High Castle by Philip K. Dick In an alternative future America lost the Second World War and has been partitioned between Japan and Nazi Germany. The narrative follows a motley crew of characters including a dealer in antique Americana, a German spy who warns a Japanese official about a looming surprise German attack, and a woman determined to track down the reclusive author of a hit book which describes an alternative future in which America won the Second World War
1968 2001: A Space Odyssey a panoramic narrative which starts with aliens stimulating evolution among the first ape-men and ends with a spaceman being transformed into galactic consciousness
1968 Do Androids Dream of Electric Sheep? by Philip K. Dick In 1992 androids are almost indistinguishable from humans except by trained bounty hunters like Rick Deckard who is paid to track down and ‘retire’ escaped andys
1969 Ubik by Philip K. Dick In 1992 the world is threatened by mutants with psionic powers who are combated by ‘inertials’. The novel focuses on the weird alternative world experienced by a group of inertials after a catastrophe on the moon

1971 Mutant 59: The Plastic Eater by Kit Pedler and Gerry Davis – a genetically engineered bacterium starts eating the world’s plastic
1973 Rendezvous With Rama by Arthur C. Clarke – in 2031 a 50-kilometre long object of alien origin enters the solar system, so the crew of the spaceship Endeavour are sent to explore it
1974 Flow My Tears, The Policeman Said by Philip K. Dick – America after the Second World War has become an authoritarian state. The story concerns popular TV host Jason Taverner who is plunged into an alternative version of this world in which he is no longer a rich entertainer but down on the streets among the ‘ordinaries’ and on the run from the police. Why? And how can he get back to his storyline?
1974 The Forever War by Joe Haldeman The story of William Mandella who is recruited into special forces fighting the Taurans, a hostile species who attack Earth outposts, successive tours of duty requiring interstellar journeys during which centuries pass on Earth, so that each of his return visits to the home planet show us society’s massive transformations over the course of the thousand years the war lasts.

1981 The Golden Age of Science Fiction edited by Kingsley Amis – 17 classic sci-fi stories from what Amis considers the Golden Era of the genre, namely the 1950s
1982 2010: Odyssey Two by Arthur C. Clarke – Heywood Floyd joins a Russian spaceship on a two-year journey to Jupiter to a) reclaim the abandoned Discovery and b) investigate the monolith on Japetus
1987 2061: Odyssey Three by Arthur C. Clarke* – Spaceship Galaxy is hijacked and forced to land on Europa, moon of the former Jupiter, in a ‘thriller’ notable for Clarke’s descriptions of the bizarre landscapes of Halley’s Comet and Europa

2061: Odyssey Three by Arthur C. Clarke (1987)

Clarke’s famous characters

I was struck by the cosy, clubby, collegiate atmosphere created by this novel. Although it’s meant to be about far-out events at the limits of human understanding, a thriller-cum-disaster story set at the remote end of the solar system – it often feels more like an after-dinner conversation at a gentleman’s club.

Every character is the ‘best in the world’ at their trade. Thus, at the captain’s table aboard the spaceship Universe, sit a typical cross-section of the planet’s great and good: ‘the planet’s best known science communicator’, a leading classical conductor, the first man to land on Mercury, the famous movie star Yva Merlin, and the planet’s best-known popular writer. We learn that the man who paid for Universe to be built is, of course, the richest man in the world, ‘the legendary Sir Lawrence Tsung’ (p.31).

These characters all know each other, share the same kind of rational approach to the world, give each other the same kind of nicknames, cultivate a knowing cliqueyness. Thus the notable passengers on the Universe who I’ve listed above are immediately nicknamed ‘the Famous Five’ by the other civilian passenger, the world famous scientist Dr Heywood Floyd (who appears in 2001: A Space Odyssey and is the key figure in 2010: Odyssey Two).

Even when new characters are introduced, such as the Afrikaaner Rolf van der Berg, who appears in what is at first a standalone strand of the plot, he is quickly bound into the club of the internationally famous by virtue of the fact that his uncle, Dr Paul Kreuger, was eminent enough to nearly be awarded a Nobel prize for particle physics (he was only disqualified because of political concerns about apartheid).

Something very similar happened a few years ago when I read through the adventure novels of Alistair MacLean in chronological order. The early ones are about nobodies who perform amazing feats battling Soviet agents or criminal gangs. But as they go on, they get worse, and MacLeans’s novels really began to go really downhill when they started to feature famous people (not real famous people – fictional famous people, the greatest racing driver, the most famous circus performer, the eminent film star, and so on).

You could call it laziness, or a fatal temptation for authors who have to churn out popular fiction by the yard – but you can see how, in a novel about nobodies, you have to earn the reader’s interest and attention; whereas, by contrast, if you start your story with a cast list which already includes the world’s most famous novelist, the world’s most famous conductor, the world’s most famous nuclear physicist, the world’s most famous space explorer and so on… then you can kind of demand the reader’s attention, as if they were reading the gossip column in Tatler or The Spectator.

It’s a kind of fictional short cut to trying to involve us. It’s like he’s expecting us to give him our respect and attention merely for the high falutin’ company he keeps, before he’s even started the story.

In these pally, clubby circles everyone is eminent enough to have been discussed in the papers and magazines and had their private lives pawed over. Which explains why famous characters aren’t introduced in their own right, but as the famous so-and-so who some critics / papers / colleagues criticise for his x, y, z public behaviour. This allows the author to then enact another cheap fictional strategy, which is – having invented various scandals or misunderstandings which dog the reputation of famous person x, y or z, to then present us as the man on the inside, the one in the know who is going to share the real reasons behind scandal x, y or z. It is the strategy of the gossip columnist, not the novelist.

And also, in these pally, clubby circles, everyone has nicknames for each other. Thus Floyd nicknames his fellow guests ‘the Famous Five’, but four of them quickly nickname the best-selling novelist Margaret M’Bala Maggie M (p.71). Later on, when Heywood comes up with a plan to use water from Halley’s Comet to fuel the Universe, despite some risks, he is quickly nicknamed ‘Suicide’ Floyd by the sceptics (p.176).

And when they’re not nicknaming each other, the characters are quick to come up with jokey nicknames for the space features they’re discovering, chirpy, jokey names which domesticates the bleak and weird features of space and brings even them into the cosy circle, the confident cabal of Clarke’s top men in their field. The habit of nicknaming which I’ve described among the little clique of VIPs aboard the Universe is shared by the crews of every other space ship and by astronomers back on Earth. That’s my point. These are all the same kind of people with the same sense of humour.

  • it looked exactly like a terrestrial geyser and had been promptly christened ‘Old Faithful’ (p.22)
  • the fifteen-hundred-kilometre-long feature that’s been christened the Grand Canal (p.38)
  • a perfectly straight two-kilometre-long feature which looked so artificial that it was christened the Great Wall. (p.136)

There is lots of ‘wry’ humour, ‘rueful’ remarks, ‘wry’ jokes and ‘rueful’ expressions. I’ve never really understood what wry and rueful mean. I can look them up in a dictionary, but I’m not sure I’ve ever seen someone give a ‘wry smile’. It’s the kind of phrase you only read in popular fiction.

  • Maggie M viewed the situation with rueful amusement. (p.200)
  • ‘By the time I abandoned Shaka,’ she wryly admitted, ‘I knew exactly what a modern Germans feels about Hitler.’ (p.209)

Not much of this is actually funny, and it has an undermining effect on the book’s tone. If you’re writing a thriller you need to be very confident of yourself to include lots of supposed humour. The risk is it won’t be funny but will work to undermine the necessary tension and suspense. This is what happened to Alistair MacLean – he got more and more jokey and less and less gripping or believable.

And, as I pointed out in my review of 2010: Odyssey Two, even if you make one of your characters comment on the fact that they appear to be in a cheap pulp melodrama – that doesn’t deflect the allegation, it’s an admission.

It was uncomfortably like one of those cheap ‘mad scientist’ melodramas… (p.146)

Clarke turned 70 as the book neared completion. Later, he would be knighted. So maybe that’s another reason for this rather self-satisfied and clubby atmosphere: maybe it reflects the mind of a man rich in honours and achievements, a genuine pioneer in science thinking as well as fiction, an incredibly effective populariser of all kinds of ideas from satellites to mobile phones to scuba diving, a man who had an amazingly distinguished life and career, who knew everyone, who was garlanded with honours. Maybe this book accurately reflects what that feels like.

Why Clarke’s predictions failed

As the title suggests, the book is set in 2061, sixty years after the alien monolith was discovered on the moon which kick-started this whole series.

Any sci-fi author writing about the future has to throw in some major events to pad out, to add ballast to their supposed future history, the obvious one being a nuclear war.

Clarke is no exception to this rule and predicts that by 2061 there will have been a short nuclear war carried out by two minor powers and only involving two bombs (I wonder if he was thinking about India and Pakistan). In light of this poisonous little conflict, Russia, America and China promptly band together to ban nuclear weapons and so the world is at peace (p.28).

Later on we learn that there has been a Third Cultural Revolution in China (there had already been a second one by the time of the 2010 book). Oh yes, and there has been the Great Californian Earthquake which reduced most of the state to flaming rubble (p.26).

In other words, Clarke’s treatment of history is the same kind of lightweight caricature as his treatment of his ‘famous’ characters – a lamentably simplistic, cartoon view of human affairs, of history, economics, geopolitics and so on, which can all be summarised in a few throwaway brushstrokes.

Like so many of the sci-fi writers of his generation (who all came to eminence in the 1950s), Clarke thinks there’ll be a nuclear war or two which will teach ‘humanity’ the errors of its ways, which will end war and conflict, and so, with the money saved, ‘mankind’ will invent a hyperdrive and set off to colonise the stars.

This simple-minded delusion is so basic to so many of these narratives that you could call it Science Fiction’s foundational myth.

This iteration of it – 2061: Odyssey Three – follows the myth exactly:  the small nuclear war leads to peace, which leads to a ‘peace dividend’, which funds the inevitable development of a new ‘space drive’, and so on to ever-widening space exploration.

Scientifically careful, as always, Clarke attributes the ability to travel at speed through space to a new ‘drive’ based on the development of muonium-hydrogen compounds in the 2040s. As a result – and as so often -the solar system is soon littered with human colonies on all the habitable planets and the moons of the gas giants, as well as various space stations in orbit, and a busy traffic of shuttles and freighters popping between them.

Seeking clues as to why – contrary to the confident predictions of Asimov, Blish, Bradbury, Clarke and so many other sci-fi writers – none of this has happened, I think there are two main reasons:

1. Erroneous comparison with other technologies

Clarke makes a profoundly mistaken comparison between air travel and space.

The Wright brothers made ‘the first controlled, sustained flight of a powered, heavier-than-air aircraft on December 17, 1903, four miles south of Kitty Hawk, North Carolina’. Only 50 years later passengers were sitting in first class while globe-spanning jet airliners flew them to Australia.

I.e it took just fifty years for the technology of manned flight to be transformed out of all recognition and to become commonly available to anyone with the cash.

In my opinion Clarke then makes the very false assumption that space travel will also proceed in the same kind of unstoppable leaps and bounds, from early primitive experiments to widespread commercial availability in a similar timespan – from Sputnik (1957) through the first men on the moon (1969), the first space shuttle in 1982 to the crewing of the International Space Station in 2000 and he then projects that forward onto bases on the moon, then Mars, then manned flights to Venus, then the new space drive and boom!

All so easy when you’re writing novels, essays and brochures for NASA.

2. Failure to understand economics

The analogy doesn’t hold because of simple economics. The space shuttle project cost some $210 billion, and each launch of a space shuttle cost over a billion dollars (until the last launch in 2011).

No commercial company can afford to spend this much. No commercial company will ever be able to make a profit out of space travel, either for tourists or for natural resources.

Only governments can fund this sort of cost, and even then only the governments of major powers, and even then only if there are demonstrable scientific, technological or geopolitical benefits. The Americans only put a man on the moon because they felt they were in a life-or-death struggle against Soviet Russia. The edge of that rivalry was wearing out in the 1980s and collapsed with the end of the Soviet Union in 1990.

There never was a commercial imperative for space travel and now there is next to no geopolitical motive. I predict there will never be a base on the moon. There will certainly never be ‘bases’ on Mars, let alone any of the other planets or moons. It just costs vastly too much, and for little or no payback.

3. Confusing space enthusiasts with ‘all mankind’

A related passage indicates another error in Clarke’s thinking. He was in the middle of explaining how ‘mankind’s thirst for knowledge pushed them on to explore blah blah blah’, when I realised, there’s the problem.

Clarke makes the common error of thinking that the subjects, activities and achievements which he has devoted his life to – are of interest to all mankind. Unfortunately, astronomy, astrophysics, space engineering, astronautics and all the rest of it are, at the end of the day, a very small minority interest. However:

1. Within the fictions, naturally enough, all the characters have dedicated their lives to these matters, and so his books – like those of Asimov or Blish – give the impression that the whole world cares as passionately about the aphelion of Io or the temperature on Callista, as they do.

2. There is a megalomania about science fiction as a genre. Pretty much from the start, from the minute H.G. Wells’s Martians emerged from their spaceships back in 1897, science fiction has dealt with global threats and an absolute central assumption of thousands of its stories is that the world will be saved by a handful of heroes. That the entire world will look up as the alien spaceships are destroyed by Will Smith and Jeff Goldblum in Independence Day.

To make it clearer – on page 83 of this book Clarke writes that really major scientific discoveries, the ones that shatter the entire worldview of a culture, don’t come along very often:

Galileos and Einsteins seldom appear more than once per century, which is just as well for the equanimity of mankind.

Just what does he mean here by ‘mankind’? Galileo published his discoveries in the 1630s, while Europe was being wracked by the Thirty Years War. Was the average European’s view of life turned upside down? No. Most Europeans were illiterate. What about the inhabitants of north or south America, Australia, Africa, or Asia? I don’t think they were too bothered either. So by ‘mankind’, Clarke is clearly referring to a tiny sub-set of Western European intellectuals.

Also, obviously enough, he has chosen two guys – Galileo and Einstein – who made big changes to the way we see the universe, to astronomy and astrophysics.

But Darwin’s theory had arguably the most seismic impact on the West, making Christian faith significantly harder to believe, while Fleming’s discovery of penicillin has had more impact on human life than any other scientific discovery ever, by saving probably billions of lives.

In Clarke’s prophecy when the major powers step in to prevent a nuclear war, it signals the end of all wars which results, of course, in a ‘peace dividend’ and, Clarke cheerfully informs us, ‘humanity’ then decides to devote this enormous amount of money to just the kind of things Clarke thinks are important, like exploring the solar system.

The flaw is when Clarke identifies the ambition and interests of a tiny minority of the earth’s population with ‘humanity’. It is, basically, identifying his own interests with all of ‘humanity’.

But the overwhelming majority of ‘earth’s population’ doesn’t want to spend hundreds of billions of dollars in constructing spaceships which half a dozen like-minded chaps can have adventures in. Sorry.

4. Confusing America with ‘all mankind’

A common error made by high-profile, high-paid American authors is to think the entire world circles round America and American cultural products.

In pulp magazines, in short stories, in novels, and in Hollywood movies, American science fiction writers have complacently assumed that Americans will bear the brunt of any alien invasion, Americans will defeat the bad guys, Americans will develop all the new technology, including the mythical space drive, Americans will lead the way in colonising space.

The cold reality

Taken together, all these wrong assumptions, false analogies and economic illiteracy, combined with the enormous PR campaign surrounding NASA and the Apollo space programme throughout the 1960s and into the 1970s, misled clever men like Clarke and Asimov into thinking that the whole world shared their passion, and that the outward urge was unstoppable.

Now, in 2019, from Syria to Xinjiang, from Burma to Brazil, people are in the same old trouble they always have been i.e. huge numbers of people are crushingly poor, unfree, victimised, exploited by massive corporations or locked up by the military police. People have other, more pressing priorities. Space is too expensive to travel to or to commercially exploit. These sci-fi stories are fantasy in the literal sense of something which never could and never will happen.

They are yesterday’s futures.

(It was only after thinking this all through that I came upon the following article about the end of the Space Age in, of all places, the New Statesman.)

The plot

When I saw the date (2061) I thought well, at least we won’t have to put up with Dr Heywood Floyd, who was a key figure in 2001: A Space Odyssey and the rather irritating central character of 2010: Odyssey Two.

So I burst out laughing when I discovered that Floyd is in 2061, appearing at the ripe old age of one hundred and three.

How come? Well, it turns out Floyd falls off a hotel balcony during a party to celebrate his return from the 2010-15 Jupiter mission, and breaks so many bones that he’s taken up to the space hospital in orbit round the Earth where he heals slowly but, by the time he does, it’s clear he’ll never be able to walk on Earth again.

So he stays up there for the next 45 years, sipping cocktails and chatting to the other occupants of the hotel, all – it goes without saying – eminent in their fields. A kind of All Souls College in space. Very cosy.

As the story opens a Chinese billionaire has funded the construction of several spaceships, leading up to the state-of-the-art spaceship Universe. Universe is scheduled to fly across the solar system to rendezvous with Halley’s Comet.

Although Clarke’s astrophysics is as precise as ever, the fictional part feels laughable. The Universe has gravity and joining Floyd at the captain’s table for fine wine and Michelin star meals are a selection of the planet’s great and good – ‘the planet’s best known science communicator’, a leading conductor, the first man to land on Mercury, and the planet’s best known popular writer, the ‘Famous Five’ I mentioned earlier.

This long sequence about the comet is only included so that Clarke can publish his (fascinating) speculations about what Halley’s Comet really looks like and what it would be like to land on it. This is genuinely interesting and obviously based on research and an intimate knowledge of space physics. I particularly enjoyed the bit where several scientists go a-wandering in their space suits, down into the spooky subterranean caverns of the comet, complete with their eerie stalactites.

But this entire sequence – the building, launch, docking at a space station, Floyd joining it, the journey to Halley’s Comet, docking with Halley’s Comet, exploring Halley’s Comet – all turns out just to be the hors d’oeuvre to what develops into quite a conventional thriller, albeit set in space.

For while the rich passengers on the Universe are frolicking on Halley’s Comet, hundreds of thousands of kilometres away, the spaceship Galaxy (also owned by richest man in the world, the ‘legendary’ Sir Lawrence Tsung) sent to investigate the moons of what was once the planet Jupiter, is hijacked by a woman with a gun – Rosie Miller – clearly an agent of some Earth power (but who or why remains a mystery), who forces the pilot at gunpoint to set the ship down on the surface of Jupiter’s moon, Europa.

Now it just so happens that out of the several billion human inhabitants of the solar system, the second mate on the spaceship Galaxy is none other than the famous Heywood Floyd’s grandson, Chris.

  1. This continues the book’s strong sense that it is a very small world in which only about twenty people count
  2. It means Floyd is thrown into understandable concern for his grandson and so
  3. He supports the ‘audacious’ plan to refuel Galaxy with water from the geysers of Halley’s Comet and then fly the Universe at top speed to Europa to rescue the Galaxy‘s 30-odd crew.

But it also turns out that 4. young Chris Floyd is himself not what he seems – he is working undercover for Astropol (the futuristic version of Interpol) who had suspected something dodgy was going to happen on the Galaxy. Aha! Mystery. Suspense.

The story turns into two parallel narratives. On Europa the crew of the Galaxy have to keep their ship afloat on the bubbling ‘ocean’ while being blown by its ‘winds’ towards a ‘shore’, all the time worrying about food and life support systems etc.

While, in alternating chapters, we eavesdrop on the harried crew and pampered passengers of the Universe as it travels at over four million kilometres per hour out towards Jupiter/Lucifer.

Young Chris Floyd and the geologist Rolf van der Berg persuade the captain of the Galaxy to let them take the ship’s little shuttle and go on an explore. There’s the usual Clarkean accuracy about the physical difficulty of extracting a shuttle out of a spaceship lying on its side beached on an alien moon, but soon enough they’re puttering across the surface.

They stop right at the foot of what astronomers have for some time been calling Mount Zeus, a vast, straight-sided geometrically clean mountain.

This appears to be what the intrigue was about, what the Rosie hijacked and forced the Galaxy to land for, because Mount Zeus is a diamond, the biggest diamond in the solar system, a diamond weighing a million million tonnes.

Van der Berg collects stray chips and fragments while explaining to Chris Floyd that the collapse of Jupiter into a star flung some of its diamond core outwards, at high speed. Most disappeared into space but this enormous mountain-sized chunk embedded in Europa, causing tectonic upheavals which they can still feel in the form of earth tremors.

Van der Berg sends an enigmatic message up to the radio receiver on another of Jupiter’s moons, Ganymede, which will relay it to Earth. The message is in code designed to tip off his friends on Earth to do something on the stock exchange – although whether knowledge that there exists a diamond the size of Mount Everest will collapse the diamond market forever, or prices will rise for rare Europa diamonds isn’t really made clear. This is a simple flaw at the heart of the ‘thriller’ narrative which is – we never understand why the hijacker forced Galaxy to land and we never really understand the consequences of Van der Berg discovering Mount Zeus is the biggest diamond in the solar system. That thread of the story is left completely unresolved.

Lastly, the two young guys fly over the surface to investigate the Europan avatar of the Monolith. Remember the monolith they found on the moon back in 2001, and then Dave Bowman discovered sticking up out of Japetus and which then multiplied in 2010: Odyssey Two to destroy Jupiter and turn it into a new sun?

Well, yet another version of it is lying sideways on the surface of Europe creating a great two-kilometre-long wall. Abutting against it they see round objects a bit like igloos. Can these be the homes of intelligent life? Nothing is moving around as they guide the shuttle down to land in a snow-covered space between igloos. But it is as they descend that Chris Floyd has a perfectly clear and lucid conversation with his grandfather – who is, of course, millions of kilometres away on Universal – which rather worries van der Berg, who thinks his pilot’s gone mad. Only later is there speculation that it was the monolith using a hologram projection of Heywood Floyd in order to communicate with his grandson. And what does the monolith say? That all the intelligent life forms who live in the igloos have fled because the little space shuttle is poisoning their atmosphere.

End

And then the novel is suddenly all over. Universe rescues everyone from Galaxy and takes them to Ganymede. The adventure ends with more heavy comedy as the human colonists are subjected to ha-ha-hilarious lectures from ‘the Famous Five’.

The ‘thriller’ plot, the entire rationale for the hijacking of Galaxy, the storyline in which Chris Floyd is an agent for Astropol, van der Berg’s cryptic messages about diamonds back to Earth – all these are just dropped. I’ve no idea why Rosie Miller hijacked the ship and I doubt whether the mere existence of a diamond mountain millions of miles from Earth would have any effect on the diamond market.

There’s another massive loose end, which is that, at the end of 2010: Odyssey Two Bowman had conveyed to Earth the warning that humans must never approach Europa. It had been set aside by the guardians for new life forms to flourish on. A couple of probes which flew too close were quickly evaporated, presumably by the guardian monolith.

So how how how how how come a) the Galaxy is able to land and b) Floyd and van der Berg are able to go shuttling all over its surface, poisoning the atmosphere, destabilising the diamond mountain and generally interfering, with no consequences whatsoever.

In all these instances – the prohibition on visiting Europa, the ‘thriller’ / Astropol conspiracy / something secret to do with van der Berg and diamonds – the plotline is just dropped. Galaxy is rescued. Then Hal and Dave and Heywood are having a nice chat. Then a thousand years later, Lucifer goes out. It feels oddly amateurish and half-hearted.

Postscript

There is a kind of postscript. We overhear conversation between the spirit of Dave Bowman, of HAL and of Dr Floyd. Somehow the other two have co-opted Floyd’s spirit, though he is still alive (?).

They recap the idea that the monoliths destroyed Jupiter in order to create a sun which would stimulate the evolution of intelligent life on Europa. But, the thing I don’t understand is that – Jupiter was itself teeming with life, strange vast gasbags blown in the impossible storms of Jupiter which had been described at length by Bowman’s spirit as it penetrated and explored Jupiter’s atmosphere in 2010: Odyssey Two.

That the creation of Lucifer resulted in the end of night on earth, I found upsetting enough. But the fact that in destroying Jupiter, the creators of the monolith destroyed all its life forms seemed to me as callous, brutal, clumsy and unthinking as most human activities. It nullified the sense which 2001 gave so powerfully of the intelligences behind the monolith being ineffably superior. Turns out they make just as questionable judgments as clumsy man.

In fact, right at the end of the story we learn that Mount Zeus was always unstable – having been flung at high speed into Europa by the destruction of Jupiter – and that right at the end, this diamond as big as Mount Everest collapses into Europa’s young seas, wiping out many species including some of the ones the monolith destroyed Jupiter in order to encourage.

It seems like futility piled on futility.

In their final exchanges, Hal and Bowman tell the spirit of Floyd that they want him to remain with them as guardian spirits protecting what life forms have survived on Europa.

Really? Even this is incredible. It took billions of years for mammals to evolve on earth, 30 million or so years for proto-apes to evolve into man. Are Bowman and HAL really going to wait that long?

Clarke has a staggering grasp of the laws of physics and astrophysics which govern the solar system in all its complexity. But his fictions seem to ignore the mind-boggling lengths of time involved in the evolution of species.

Post-postscript

But sure enough, it’s ‘only’ 1,000 years later that the population of Earth one day sees Lucifer collapse and the solar system’s second sun go out. To be precise:

Suddenly, almost as swiftly as it had been born, Lucifer began to fade. The night that men had not known for thirty generations flooded back into the sky. The banished stars returned.

And for the second time in four million years, the Monolith awoke. (final words)

That’s where the novel ends, presumably setting the reader up for the fourth and final novel in the 2001 series, which – I would bet – involves a trip to Europa and a meeting with the other intelligent life in the solar system.


Related links

Arthur C. Clarke reviews

  • Childhood’s End (1953) a thrilling narrative involving the ‘Overlords’ who arrive from space to supervise mankind’s transition to the next stage in its evolution
  • A Fall of Moondust (1961) a pleasure tourbus on the moon is sucked down into a sink of moondust, sparking a race against time to rescue the trapped crew and passengers
  • 2001: A Space Odyssey (1968) a panoramic narrative which starts with aliens stimulating evolution among the first ape-men and ends with a spaceman being transformed into galactic consciousness
  • Rendezvous with Rama (1973) a 50-kilometre-long object of alien origin enters the solar system so the crew of the spaceship Endeavour are sent to explore it
  • 2010: Odyssey Two (1982) Heywood Floyd joins a Russian spaceship on a two-year journey to Jupiter to a) reclaim the abandoned Discovery and b) investigate the enormous monolith on Japetus
  • 2061: Odyssey Three (1987) Spaceship Galaxy is hijacked and forced to land on Europa, a moon of the former Jupiter, but the thriller aspects are only pretexts for Clarke’s wonderful descriptions of landing on Halley’s Comet and the evolution of wild and unexpected new forms of life on Europa

Other science fiction reviews

1888 Looking Backward 2000-1887 by Edward Bellamy – Julian West wakes up in the year 2000 to discover a peaceful revolution has ushered in a society of state planning, equality and contentment
1890 News from Nowhere by William Morris – waking from a long sleep, William Guest is shown round a London transformed into villages of contented craftsmen

1895 The Time Machine by H.G. Wells – the unnamed inventor and time traveller tells his dinner party guests the story of his adventure among the Eloi and the Morlocks in the year 802,701
1896 The Island of Doctor Moreau by H.G. Wells – Edward Prendick is stranded on a remote island where he discovers the ‘owner’, Dr Gustave Moreau, is experimentally creating human-animal hybrids
1897 The Invisible Man by H.G. Wells – an embittered young scientist, Griffin, makes himself invisible, starting with comic capers in a Sussex village, and ending with demented murders
1898 The War of the Worlds – the Martians invade earth
1899 When The Sleeper Wakes/The Sleeper Wakes by H.G. Wells – Graham awakes in the year 2100 to find himself at the centre of a revolution to overthrow the repressive society of the future
1899 A Story of the Days To Come by H.G. Wells – set in the same future London as The Sleeper Wakes, Denton and Elizabeth defy her wealthy family in order to marry, fall into poverty, and experience life as serfs in the Underground city run by the sinister Labour Corps

1901 The First Men in the Moon by H.G. Wells – Mr Bedford and Mr Cavor use the invention of ‘Cavorite’ to fly to the moon and discover the underground civilisation of the Selenites
1904 The Food of the Gods and How It Came to Earth by H.G. Wells – scientists invent a compound which makes plants, animals and humans grow to giant size, prompting giant humans to rebel against the ‘little people’
1905 With the Night Mail by Rudyard Kipling – it is 2000 and the narrator accompanies a GPO airship across the Atlantic
1906 In the Days of the Comet by H.G. Wells – a comet passes through earth’s atmosphere and brings about ‘the Great Change’, inaugurating an era of wisdom and fairness, as told by narrator Willie Leadford
1908 The War in the Air by H.G. Wells – Bert Smallways, a bicycle-repairman from Kent, gets caught up in the outbreak of the war in the air which brings Western civilisation to an end
1909 The Machine Stops by E.M. Foster – people of the future live in underground cells regulated by ‘the Machine’ until one of them rebels

1912 The Lost World by Sir Arthur Conan Doyle – Professor Challenger leads an expedition to a plateau in the Amazon rainforest where prehistoric animals still exist
1912 As Easy as ABC by Rudyard Kipling – set in 2065 in a world characterised by isolation and privacy, forces from the ABC are sent to suppress an outbreak of ‘crowdism’
1913 The Horror of the Heights by Arthur Conan Doyle – airman Captain Joyce-Armstrong flies higher than anyone before him and discovers the upper atmosphere is inhabited by vast jellyfish-like monsters
1914 The World Set Free by H.G. Wells – A history of the future in which the devastation of an atomic war leads to the creation of a World Government, told via a number of characters who are central to the change
1918 The Land That Time Forgot by Edgar Rice Burroughs – a trilogy of pulp novellas in which all-American heroes battle ape-men and dinosaurs on a lost island in the Antarctic

1921 We by Evgeny Zamyatin – like everyone else in the dystopian future of OneState, D-503 lives life according to the Table of Hours, until I-330 wakens him to the truth
1925 Heart of a Dog by Mikhail Bulgakov – a Moscow scientist transplants the testicles and pituitary gland of a dead tramp into the body of a stray dog, with disastrous consequences
1927 The Maracot Deep by Arthur Conan Doyle – a scientist, engineer and a hero are trying out a new bathysphere when the wire snaps and they hurtle to the bottom of the sea, there to discover…

1930 Last and First Men by Olaf Stapledon – mind-boggling ‘history’ of the future of mankind over the next two billion years
1938 Out of the Silent Planet by C.S. Lewis – baddies Devine and Weston kidnap Ransom and take him in their spherical spaceship to Malacandra aka Mars,

1943 Perelandra (Voyage to Venus) by C.S. Lewis – Ransom is sent to Perelandra aka Venus, to prevent a second temptation by the Devil and the fall of the planet’s new young inhabitants
1945 That Hideous Strength: A Modern Fairy-Tale for Grown-ups by C.S. Lewis– Ransom assembles a motley crew to combat the rise of an evil corporation which is seeking to overthrow mankind
1949 Nineteen Eighty-Four by George Orwell – after a nuclear war, inhabitants of ruined London are divided into the sheep-like ‘proles’ and members of the Party who are kept under unremitting surveillance

1950 I, Robot by Isaac Asimov – nine short stories about ‘positronic’ robots, which chart their rise from dumb playmates to controllers of humanity’s destiny
1950 The Martian Chronicles – 13 short stories with 13 linking passages loosely describing mankind’s colonisation of Mars, featuring strange, dreamlike encounters with Martians
1951 Foundation by Isaac Asimov – the first five stories telling the rise of the Foundation created by psychohistorian Hari Seldon to preserve civilisation during the collapse of the Galactic Empire
1951 The Illustrated Man – eighteen short stories which use the future, Mars and Venus as settings for what are essentially earth-bound tales of fantasy and horror
1952 Foundation and Empire by Isaac Asimov – two long stories which continue the future history of the Foundation set up by psychohistorian Hari Seldon as it faces attack by an Imperial general, and then the menace of the mysterious mutant known only as ‘the Mule’
1953 Second Foundation by Isaac Asimov – concluding part of the ‘trilogy’ describing the attempt to preserve civilisation after the collapse of the Galactic Empire
1953 Earthman, Come Home by James Blish – the adventures of New York City, a self-contained space city which wanders the galaxy 2,000 years hence powered by spindizzy technology
1953 Fahrenheit 451 by Ray Bradbury – a masterpiece, a terrifying anticipation of a future when books are banned and professional firemen are paid to track down stashes of forbidden books and burn them
1954 The Caves of Steel by Isaac Asimov – set 3,000 years in the future when humans have separated into ‘Spacers’ who have colonised 50 other planets, and the overpopulated earth whose inhabitants live in enclosed cities or ‘caves of steel’, and introducing detective Elijah Baley to solve a murder mystery
1956 The Naked Sun by Isaac Asimov – 3,000 years in the future detective Elijah Baley returns, with his robot sidekick, R. Daneel Olivaw, to solve a murder mystery on the remote planet of Solaria
1956 They Shall Have Stars by James Blish – explains the invention – in the near future – of the anti-death drugs and the spindizzy technology which allow the human race to colonise the galaxy
1959 The Triumph of Time by James Blish – concluding story of Blish’s Okie tetralogy in which Amalfi and his friends are present at the end of the universe

1962 A Life For The Stars by James Blish – third in the Okie series about cities which can fly through space, focusing on the coming of age of kidnapped earther, young Crispin DeFord, aboard New York
1962 The Man in the High Castle by Philip K. Dick In an alternative future America lost the Second World War and has been partitioned between Japan and Nazi Germany. The narrative follows a motley crew of characters including a dealer in antique Americana, a German spy who warns a Japanese official about a looming surprise German attack, and a woman determined to track down the reclusive author of a hit book which describes an alternative future in which America won the Second World War
1968 Do Androids Dream of Electric Sheep? by Philip K. Dick In 1992 androids are almost indistinguishable from humans except by trained bounty hunters like Rick Deckard who is paid to track down and ‘retire’ escaped andys
1969 Ubik by Philip K. Dick In 1992 the world is threatened by mutants with psionic powers who are combated by ‘inertials’. The novel focuses on the weird alternative world experienced by a group of inertials after a catastrophe on the moon

1971 Mutant 59: The Plastic Eater by Kit Pedler and Gerry Davis – a genetically engineered bacterium starts eating the world’s plastic
1973 Rendezvous With Rama by Arthur C. Clarke – in 2031 a 50-kilometre long object of alien origin enters the solar system, so the crew of the spaceship Endeavour are sent to explore it
1974 Flow My Tears, The Policeman Said by Philip K. Dick – America after the Second World War is a police state but the story is about popular TV host Jason Taverner who is plunged into an alternative version of this world where he is no longer a rich entertainer but down on the streets among the ‘ordinaries’ and on the run from the police. Why? And how can he get back to his storyline?

1981 The Golden Age of Science Fiction edited by Kingsley Amis – 17 classic sci-fi stories from what Amis considers the Golden Era of the genre, namely the 1950s

2001: A Space Odyssey by Arthur C. Clarke (1968)

Origins

It all started with a short story Clarke wrote for a BBC competition in 1948 when he was just 21, and titled The Sentinel. It was eventually published in 1951 under the title Sentinel of Eternity.

13 years later, after completing Dr. Strangelove in 1964, American movie director Stanley Kubrick turned his thoughts to making a film with a science fiction subject. Someone suggested Clarke as a source and collaborator, and when they met, later in 1964, they got on well and formed a good working relationship.

Neither of them could have predicted that it would take them four long years of brainstorming, viewing and reading hundreds of sci-fi movies and stories, and then honing and refining the narrative, to develop the screenplay which became the film 2001: A Space Odyssey, released in 1968 and one of the most influential movies of all time.

The original plan had been to develop the story as a novel first, then turn it into a screenplay, then into the film, but the process ended up being more complex than that. The novel ended up being written mostly by Clarke, while Kubrick’s screenplay departed from it in significant ways.

The most obvious difference is that the book is full of Clarke’s sensible, down-to-earth, practical explanations of all or most of the science involved. It explains things. From the kick-start given to human evolution by the mysterious monolith through to Bowman’s journey through the Star Gate, Clarke explains and contextualises.

This is all in stark contrast with the film which Kubrick made as cryptic as possible by reducing dialogue to an absolute minimum, and eliminating all explanation. Kubrick is quoted as saying that the film was ‘basically a visual, nonverbal experience’, something which a novel, by definition, can not be.

The novel

The novel is divided into 47 short snappy chapters, themselves grouped into six sections.

1. Primeval Night

The basic storyline is reasonably clear. A million years ago an alien artefact appears on earth, materialising in Africa, in the territory of a small group of proto-human man-apes. Clarke describes their wretched condition in the hot parched Africa of the time, permanently bordering on starvation, watered only by a muddy streamlet, dying of malnutrition and weakness or of old age at 30, completely at the mercy of predators like a local leopard.

The object – 15 feet high and a yard wide – appears from nowhere. When the ape-men lumber past it on the way to their foraging ground, it becomes active and literally puts ideas into their heads. It takes possession of members of the group in turn and forces them to tie knots in grass, to touch their fingers together, to perform basic physical IQ tests. Then, crucially, it patiently shows them how to use stones and the bones of dead animals as tools.

The result is that they a) kill and eat a wild pig, the first meat ever eaten by the ape-men b) surround and kill the leopard that’s been menacing the tribe c) use these skills to bludgeon the leader of ‘the Others’, a smaller weaker tribe on the other side of the stream. In other words, the alien artefact has intervened decisively in the course of evolution to set man on his course to becoming a planet-wide animal killer and tool maker.

In the kind of fast-forward review section which books can do and movies can’t, Clarke then skates over the hundreds of thousands of years of evolution which follow, during which human’s teeth became smaller, their snouts less prominent, giving them the ability to make more precise sounds through their vocal cords – the beginnings of speech – how ice ages swept over the world killing most human species but leaving the survivors tougher, more flexible, more intelligent, and then the discovery of fire, of cooking, a widening of diet and survival strategies. And then to the recent past, to the Stone, Iron and Bronze ages, and sweeping right past the present to the near future and the age of space travel.

Compare and contrast the movie where all this is conveyed by the famous cut from a bone thrown into the air by an ape-man which is half way through its parabola when it turns into a space ship in orbit round earth. Prose describes, film dazzles.

2. T.M.A.-1

It is 2001. Humanity has built space stations in orbit around the earth, and a sizeable base on the moon. Dr Heywood Floyd, retired astrophysicist, is taking the journey from the American launch base in Florida, to dock with the orbiting space station, and then on to the moon base.

Clarke in his thorough, some might say pedantic, way, leaves no aspect of the trip undescribed and unexplained. How the rocket launcher works, how to prepare for blast-off, how the space station maintains a sort of gravity by rotating slowly, the precise workings of its space toilets (yes), the transfer to the shuttle down to the moon: Clarke loses no opportunity to mansplain every element of the journey, including some favourite facts familiar from the other stories I’ve read: the difference between weight and mass; how centrifugal spin creates increased gravity the further you are from the axis of spin; ‘the moon’s strangely close horizon’ (p.74); how damaging an alien artifact would be the work of a ‘barbarian’ (a thought repeated several times in Rama).

Two other features emerge. Clarke’s protagonists are always men, and they are almost always married men, keen to keep in touch with their wives, using videophones. In other words they’re not valiant young bucks as per space operas. It’s another element in the practical, level-headed approach of Clarke’s worldview.

Secondly, Clarke is a great one for meetingsChildhood’s End‘s middle sections rotate around the Secretary General of the United Nations who has a busy schedule of meetings, from his weekly conference with the Overlords to his meetings with the head of the Freedom league, and his discussion of issues arising with his number two.

A Fall of Moondust features hurried conferences between the top officials on the moon. The narrative of Rendezvous with Rama is punctuated all the way through by meetings of the committee made up of with representatives from the inhabited planets, who discuss the issues arising but also get on each other’s nerves, bicker and argue, grandstand, storm out and so on. His fondness for the set meeting, with a secretary taking notes and a chairman struggling to bring everyone into line, is another of the features which makes Clarke’s narratives seem so reassuringly mundane and rooted in reality.

Same here. Floyd is flying to the moon to take part in a top secret, high-level meeting of moon officials. He opens the meeting by conveying the President’s greetings and thanks (as people so often do in sci-fi thrillers like this).

In brief: a routine survey of the moon has turned up a magnetic anomaly in the huge crater named Tycho. (The anomaly has been prosaically named Tycho Magnetic Anomaly One – hence the section title T.M.A.-1.) When the surveyors dug down they revealed an object, perfectly smooth and perfectly black, eleven foot high, five foot wide and one and a quarter foot deep. Elementary geology has shown that the object was buried there three million years ago.

After a briefing with the moon team Floyd goes out by lunar tractor to the excavation site where digging has now fully revealed the artifact. Floyd and some others go down into the excavation and walk round the strange object which seems to absorb light. The sun is rising (the moon turns on its axis once in fourteen days) and as its light falls onto the artifact – for probably the first time in millions of years – Floyd and the others are almost deafened by five intense burst of screeching sound which cut through their radio communications.

Millions of miles away in space, deep space monitors, orbiters round Mars, a probe launched to Pluto – all record and measure an unusual burst of energy streaking across the solar system… Cut to:

3. Between Planets

David Bowman is captain of the spaceship Discovery. It was built to transport two live passengers (himself and Frank Poole) and three others in suspended animation, to Jupiter. But two years into the project the TMA-1 discovery was made and plans were changed. Now the ship is intending to use the gravity of Jupiter as a sling to propel it on towards Saturn. When they enter Saturn’s orbit the three sleeping crew members (nicknamed ‘hibernauts’) will be woken and the full team of five will have 100 days to study the super-massive gas giant, before all the crew re-enter hibernation, and wait to be picked up by Discovery II, still under construction.

Clarke is characteristically thorough in describing just about every aspect of deep space travel you could imagine, the weightlessness, the scientific reality of hibernation, the food, what the earth looks like seen from several million miles away. He gives an hour by hour rundown of Bowman and Poole’s 24-hour schedule, which is every bit as boring as the thing itself. He describes in minute astronomical detail the experience of flying through the asteroid belt and on among the moons of Jupiter, watching the sun ‘set’ behind it and other strange and haunting astronomical phenomena which no one has seen.

Then there’s a sequence in which he imagines the pictures sent back by a probe which Bowman and Poole send down into Jupiter’s atmosphere: fantastic but completely plausible imaginings. After reporting what they see from the ship, and the images relayed by the probe, the couple have done with Jupiter and set their faces to Saturn, some three months and four hundred million miles away.

The awesomeness doesn’t come from the special effects and canny use of classical music, as per the movie, but from straightforward statement of the scientific and technical facts – such as that they are now 700 million miles from earth (p.131), travelling at a speed of over one hundred thousand miles an hour (p.114).

4. Abyss

All activities on the Discovery are run or monitored by the ship’s onboard computer, HAL 9000, ‘the brain and nervous system of the ship’ (p.97). HAL stands for Heuristically programmed ALgorithmic computer. It is the most advanced form of the self-teaching neural network which, Clarke predicts, will have been discovered in the 1980s.

HAL has a nervous breakdown. He predicts the failure of the unit which keeps the radio antenna pointed at earth. Poole goes out in one of the nine-foot space pods, anchors to the side of the ship, then does a short space walk in a space suit, unbolts the failing unit and replaces it.

But back inside the ship the automatic testing devices find nothing wrong with the unit. When a puzzled Bowman and Poole report all this back to earth, Mission Control come back with the possibility that the HAL 9000 unit might have made a mistake.

Poole and Bowman ponder the terrifying possibility that the computer which is running the whole mission might be failing. Mission Control send a further message saying the two HAL 9000 units they are using to replicate all aspects of the mission back home both now recommend disconnecting the HAL computer aboard the Discovery. Earth is just in the middle of starting to give details about how to disconnect HAL when the radio antenna unit really does fail and contact with earth is broken. Coincidence? Bear in mind that HAL has been monitoring all of these conversations…

After discussing the possibility that HAL was right all along about the unit and that they are being paranoid  about him, Poole goes out for another space walk and repair. He’s in the middle of installing the new unit when he sees something out the corner of his eye, looks up and sees the pod suddenly shooting straight at him. With no time to take evasive action Poole is crushed by the ten-ton pod, his space suit ruptured, he is dead in seconds. Through an observation window Bowman sees first the pod and then Bowman’s body fly past and away from the ship.

Bowman confronts Hal, who calmly regrets that there has been accident. Mission orders demand that Bowman now revive one of the three hibernators since there must always be two people active on the ship. HAL argues with Bowman, saying this won’t be necessary, by which stage Bowman realises there is something seriously wrong. He threatens to disconnect HAL at which point the computer abruptly relents. Bowman makes his way to the three hibernator pods and has just started to revive the next in line of command, Whitehead when… HAL opens both doors of the ship’s airlock and all the air starts to flood out into space. In the seconds before the ship becomes a vacuum, Bowman manages to make it to an emergency alcove, seal himself in, jets it up with oxygen and climb into the spacesuit kept there for just such emergencies.

Having calmed down from the shock, Bowman secures his suit then climbs out, makes his way through the empty, freezing, lifeless ship to the sealed room where HAL’s circuits are stored and powered and… systematically removes all the ‘higher’ functions which permit HAL to ‘think’, leaving only the circuits which control the ship’s core functions. HAL asks him not to and, exactly as in the film, reverts to his ‘childhood’, his earliest learning session, finally singing the song ‘Daisy, Daisy, give me your answer do.’

Hours later Bowman makes a journey in the remaining pod to fix the radio antenna, then returns, closes the airlock doors and slowly restores atmosphere to the ship. Then contacts earth. And it is only now that Dr Floyd, summoned by Mission Control, tells him the true reason for the mission. Tells him about the artifact in Tycho crater. Tells him that it emitted some form of energy which all our monitors indicate was targeted at Saturn, specifically at one of its many moon, Japetus. That is what the Discovery has been sent to investigate.

And it is only in the book that Clarke is able to tell us why HAL went mad. It was the conflict between a) the demand to be at all times totally honest, open and supportive of his human crew and b) the command to keep the true purpose of the mission secret, which led HAL to have a nervous breakdown, and decide to remove one half of the conflict i.e. the human passengers, which would allow him to complete the second half, the mission to Saturn, in perfect peace of ‘mind’.

5. The Moons of Saturn

So now Bowman properly understands the mission, goes about fixing the Discovery, is in constant contact with earth and Clarke gives us an interesting chapter pondering the meaning of the sentinel and what it could have been saying. Was it a warning to its makers, or a message to invade? Where was the message sent? To beings which had evolved on or near Saturn (impossible, according to all the astrophysicists)? Or to somewhere beyond the solar system itself? In which case how could anything have travelled that far, if Einstein is correct and nothing can travel faster than light?

These last two chapters have vastly more factual information in than the movie. What the movie does without any dialogue, with stunning images and eerie music, Clarke does with his clear authoritative factual explanations. He gives us detailed descriptions of the rings of Saturn from close up, along with meticulously calculated information about perihelions and aphelions and the challenges of getting into orbit around Saturn.

But amid all this factuality is the stunning imaginative notion that the moon of Saturn, Japetus, bears on its surface a vast white eye shape at the centre of which stands an enormous copy of the TMA artifact, a huge jet black monolith maybe a mile high.

Which leads into a chapter describing the race which placed it there, which had evolved enough to develop planet travel, then space travel, then moved their minds into artificial machines and then into lattices of light which could spread across space and so, finally, into what humans would call spirit, free from time and space, at one with the universe.

It is this enormous artifact which Bowman now radios Mission Control he is about to go down to in the pod and explore.

6. Through the Star Gate

In the movie this section becomes a non-verbal experience of amazing visual effects. A book can’t do that. It has to describe and, being Clarke, can’t help also explaining, at length, what is going on.

Thus the book is much clearer and more comprehensible about what happens in this final section. Bowman guides his pod down towards the enormous artifact and is planning to land on its broad ‘top’ when, abruptly it turns from being an object sticking out towards him into a gate or cave or tunnel leading directly through the moon it’s situated on. He has just time to make one last comment to Mission Control before the pod is sucked through into the star gate and his adventure begins.

He travels along some faster-than-light portal, watching space bend around him and time slow down to a halt. He emerges into a place where the stars are more static and, looking back, sees a planet with a flat face pockmarked by black holes like the one he’s just come through, and what, when he looks closely, seems to be the wreck of a metal spaceship. He realises this must be a kind of terminal for spaceships between voyages, then the pod slowly is sucked back into one of the holes.

More faster than light travelling, then he emerges into a completely unknown configuration of stars, red dwarfs, sun clusters, the pod slows to a halt and comes to rest in… a hotel room.

Terrified, Bowman makes all the necessary checks, discovers it has earth gravity and atmosphere, gets out of the pod, takes off his spacesuit, has a shower and shave, dresses in one of the suits of clothes provided in a wardrobe, checks out the food in the fridge, or in tins or boxes of cereal.

But he discovers that the books on the coffee table have no insides, the food inside the containers is all the same blue sludge. When he lies on the bed flicking through the channels on the TV he stumbles across a soap opera which is set in this very same hotel room he is lying in. Suddenly he understands. The sentinel, after being unearthed, monitored all radio and TV signals from earth and signalled them to the Japetus relay station and on here – wherever ‘here’ is – and used them as a basis to create a ‘friendly’ environment for their human visitor.

Bowman falls asleep on the bed and while he sleeps goes back in time, recapitulating his whole life. And part of him is aware that all the information of his entire life is being stripped from his mind and transferred to a lattice of light, the same mechanism which Clarke explained earlier in the novel, was the invention of the race which created the sentinel. Back, back, back his life reels until – in a miraculous moment – the room contains a baby, which opens its mouth to utter its first cry.

The crystal monolith appears, white lights flashing and fleering within its surface, as we saw them do when it first taught the man-apes how to use tools and eat meat, all those hundreds of thousands of years ago.

Now it is probing and instructing the consciousness of Bowman, guiding him towards the next phase. The monolith disappears. The being that was Bowman understands, understands its meaning, understands how to travel through space far faster than the primitive star gate he came here by. All he needs is to focus his ‘mind’ and he is there.

For a moment he is terrified by the immensity of space and the infinity of the future, but then realises he is not alone, becomes aware of some force supporting and sustaining him, the guiders.

Using thought alone he becomes present back in the solar system he came from. Looking down he becomes aware of alarm bells ringing and flotillas of intercontinental missiles hurtling across continents to destroy each other. He has arrived just as a nuclear war was beginning. Preferring an uncluttered sky, he abolishes all the missiles with his will.

Then he waited, marshalling his thoughts and brooding over his still untested powers. For though he was master of the world, he was not quite sure what to do next.

But he would think of something.

And those are the final sentences of the book.

Thoughts

Like Childhood’s End the book proceeds from fairly understandable beginnings to a mind-boggling, universe-wide ending, carrying the reader step by step through what feels almost – if you let it take control of your imagination – like a religious experience.

Eliot Fremont-Smith reviewing the book in the New York Times, commented that it was ‘a fantasy by a master who is as deft at generating accelerating, almost painful suspense as he is knowledgeable and accurate (and fascinating) about the technical and human details of space flight and exploration.’

That strikes me as being a perfect summation of Clarke’s appeal – the combination of strict technical accuracy, with surprisingly effective levels of suspense and revelation.

His concern for imagining the impact of tiny details reminds me of H.G. Wells. In the Asimov and Blish stories I’ve been reading, if there’s a detail or the protagonist notices something, it will almost certainly turn out to be important to the plot. Clarke is the direct opposite. Like Wells his stories are full of little details whose sole purpose is to give the narrative a terrific sense of verisimilitude.

To pick one from hundreds, I was struck by the way that Dr Floyd finds wearing a spacesuit on the surface of the moon reassuring. Why? Because its extra weight and stiffness counter the one sixth gravity of the moon, and so subconsciously remind him of the gravity on earth. Knowing that fact, and then deploying it in order to describe the slight but detectable impact it has on one of his characters’ moods,strikes me as typical Clarke.

Hundreds of other tiny but careful thinkings-though of the situations which his characters find themselves in, bring them home and make them real.

And as to suspense, Clarke is a great fan of the simple but straightforward technique of ending chapters with a threat of disaster. E.g. after his first space walk Poole returns to the ship confident that he has fixed the problem.

In this, however, he was sadly mistaken. (p.140)

Although this is pretty cheesy, it still works. He is a master of suspense. The three other novels I’ve read by him are all thrilling, and even though I’ve seen the movie umpteen times and so totally know the plot, reading Clarke’s book I was still scared when HAL started malfunctioning, and found Bowman’s struggle to disconnect him thrilling and moving.

As to the final section, when Bowman travels through the star gate and is transformed into a new form of life, of celestial consciousness, if you surrender to the story the experience is quite mind-boggling.

It also explains a lot – and makes much more comprehensible – what is left to implication and special effects in the movie.

Forlorn predictions

Clarke expects that by 2001:

  • there will be a permanent colony on the moon, where couples will be having and bringing up children destined never to visit the earth
  • there will also be a colony on Mars
  • there will be a ‘plasma drive’ which allows for super-fast spaceship travel to other planets

I predict there will never be a colony on the moon, let alone Mars, and no ‘plasma drive’.

On the plus side, Clarke predicts that by 2001 there will be a catastrophic six billion people on earth, which will result in starvation, and food preservation policies even in the rich West. In the event there were some 6.2 billion people alive in 2001, but although there were the usual areas of famine in the world, there wasn’t the really widespread food shortages Clarke predicted.

The future has turned out to be much more human, mundane, troubled and earth-bound than Clarke and his generation expected.

Trailer

Credit

All references are to the 2011 reprint of the 1998 Orbit paperback edition of 2001: A Space Odyssey by Arthur C. Clarke, first published by Hutchinson in 1968.


Related links

Arthur C. Clarke reviews

  • Childhood’s End (1953) a thrilling narrative involving the ‘Overlords’ who arrive from space to supervise mankind’s transition to the next stage in its evolution
  • A Fall of Moondust (1961) a pleasure tourbus on the moon is sucked down into a sink of moondust, sparking a race against time to rescue the trapped crew and passengers
  • 2001: A Space Odyssey (1968) a panoramic narrative which starts with aliens stimulating evolution among the first ape-men and ends with a spaceman being transformed into galactic consciousness
  • Rendezvous With Rama (1973) it is 2031 and when an alien object, a cylinder 15 k wide by 50 k long, enters the solar system, and Commander Norton and the crew of Endeavour are sent to explore it

Other science fiction reviews

1888 Looking Backward 2000-1887 by Edward Bellamy – Julian West wakes up in the year 2000 to discover a peaceful revolution has ushered in a society of state planning, equality and contentment
1890 News from Nowhere by William Morris – waking from a long sleep, William Guest is shown round a London transformed into villages of contented craftsmen

1895 The Time Machine by H.G. Wells – the unnamed inventor and time traveller tells his dinner party guests the story of his adventure among the Eloi and the Morlocks in the year 802,701
1896 The Island of Doctor Moreau by H.G. Wells – Edward Prendick is stranded on a remote island where he discovers the ‘owner’, Dr Gustave Moreau, is experimentally creating human-animal hybrids
1897 The Invisible Man by H.G. Wells – an embittered young scientist, Griffin, makes himself invisible, starting with comic capers in a Sussex village, and ending with demented murders
1898 The War of the Worlds – the Martians invade earth
1899 When The Sleeper Wakes/The Sleeper Wakes by H.G. Wells – Graham awakes in the year 2100 to find himself at the centre of a revolution to overthrow the repressive society of the future
1899 A Story of the Days To Come by H.G. Wells – set in the same London of the future described in the Sleeper Wakes, Denton and Elizabeth fall in love, then descend into poverty, and experience life as serfs in the Underground city run by the sinister Labour Corps

1901 The First Men in the Moon by H.G. Wells – Mr Bedford and Mr Cavor use the invention of ‘Cavorite’ to fly to the moon and discover the underground civilisation of the Selenites
1904 The Food of the Gods and How It Came to Earth by H.G. Wells – two scientists invent a compound which makes plants, animals and humans grow to giant size, leading to a giants’ rebellion against the ‘little people’
1905 With the Night Mail by Rudyard Kipling – it is 2000 and the narrator accompanies a GPO airship across the Atlantic
1906 In the Days of the Comet by H.G. Wells – a passing comet trails gasses through earth’s atmosphere which bring about ‘the Great Change’, inaugurating an era of wisdom and fairness, as told by narrator Willie Leadford
1908 The War in the Air by H.G. Wells – Bert Smallways, a bicycle-repairman from Bun Hill in Kent, manages by accident to be an eye-witness to the outbreak of the war in the air which brings Western civilisation to an end
1909 The Machine Stops by E.M. Foster – people of the future live in underground cells regulated by ‘the Machine’ until one of them rebels

1912 The Lost World by Sir Arthur Conan Doyle – Professor Challenger leads an expedition to a plateau in the Amazon rainforest where prehistoric animals still exist
1912 As Easy as ABC by Rudyard Kipling – set in 2065 in a world characterised by isolation and privacy, forces from the ABC are sent to suppress an outbreak of ‘crowdism’
1913 The Horror of the Heights by Arthur Conan Doyle – airman Captain Joyce-Armstrong flies higher than anyone before him and discovers the upper atmosphere is inhabited by vast jellyfish-like monsters
1914 The World Set Free by H.G. Wells – A history of the future in which the devastation of an atomic war leads to the creation of a World Government, told via a number of characters who are central to the change
1918 The Land That Time Forgot by Edgar Rice Burroughs – a trilogy of pulp novellas in which all-American heroes battle ape-men and dinosaurs on a lost island in the Antarctic

1921 We by Evgeny Zamyatin – like everyone else in the dystopian future of OneState, D-503 lives life according to the Table of Hours, until I-330 wakens him to the truth
1925 Heart of a Dog by Mikhail Bulgakov – a Moscow scientist transplants the testicles and pituitary gland of a dead tramp into the body of a stray dog, with disastrous consequences
1927 The Maracot Deep by Arthur Conan Doyle – a scientist, engineer and a hero are trying out a new bathysphere when the wire snaps and they hurtle to the bottom of the sea, there to discover…

1930 Last and First Men by Olaf Stapledon – mind-boggling ‘history’ of the future of mankind over the next two billion years
1932 Brave New World by Aldous Huxley
1938 Out of the Silent Planet by C.S. Lewis – baddies Devine and Weston kidnap Ransom and take him in their spherical spaceship to Malacandra aka Mars,

1943 Perelandra (Voyage to Venus) by C.S. Lewis – Ransom is sent to Perelandra aka Venus, to prevent a second temptation by the Devil and the fall of the planet’s new young inhabitants
1945 That Hideous Strength: A Modern Fairy-Tale for Grown-ups by C.S. Lewis– Ransom assembles a motley crew to combat the rise of an evil corporation which is seeking to overthrow mankind
1949 Nineteen Eighty-Four by George Orwell – after a nuclear war, inhabitants of ruined London are divided into the sheep-like ‘proles’ and members of the Party who are kept under unremitting surveillance

1950 I, Robot by Isaac Asimov – nine short stories about ‘positronic’ robots, which chart their rise from dumb playmates to controllers of humanity’s destiny
1950 The Martian Chronicles – 13 short stories with 13 linking passages loosely describing mankind’s colonisation of Mars, featuring strange, dreamlike encounters with Martians
1951 Foundation by Isaac Asimov – the first five stories telling the rise of the Foundation created by psychohistorian Hari Seldon to preserve civilisation during the collapse of the Galactic Empire
1951 The Illustrated Man – eighteen short stories which use the future, Mars and Venus as settings for what are essentially earth-bound tales of fantasy and horror
1952 Foundation and Empire by Isaac Asimov – two long stories which continue the future history of the Foundation set up by psychohistorian Hari Seldon as it faces down attack by an Imperial general, and then the menace of the mysterious mutant known only as ‘the Mule’
1953 Second Foundation by Isaac Asimov – concluding part of the ‘trilogy’ describing the attempt to preserve civilisation after the collapse of the Galactic Empire
1953 Earthman, Come Home by James Blish – the adventures of New York City, a self-contained space city which wanders the galaxy 2,000 years hence powered by spindizzy technology
1953 Fahrenheit 451 by Ray Bradbury – a masterpiece, a terrifying anticipation of a future when books are banned and professional firemen are paid to track down stashes of forbidden books and burn them
1953 Childhood’s End by Arthur C. Clarke – a thrilling tale of the Overlords who arrive from space to supervise mankind’s transition to the next stage in its evolution
1954 The Caves of Steel by Isaac Asimov – set 3,000 years in the future when humans have separated into ‘Spacers’ who have colonised 50 other planets, and the overpopulated earth whose inhabitants live in enclosed cities or ‘caves of steel’, and introducing detective Elijah Baley to solve a murder mystery
1956 The Naked Sun by Isaac Asimov – 3,000 years in the future detective Elijah Baley returns, with his robot sidekick, R. Daneel Olivaw, to solve a murder mystery on the remote planet of Solaria
1956 They Shall Have Stars by James Blish – explains the invention – in the near future – of the anti-death drugs and the spindizzy technology which allow the human race to colonise the galaxy
1959 The Triumph of Time by James Blish – concluding story of Blish’s Okie tetralogy in which Amalfi and his friends are present at the end of the universe

1962 A Life For The Stars by James Blish – third in the Okie series about cities which can fly through space, focusing on the coming of age of kidnapped earther, young Crispin DeFord, aboard New York

1971 Mutant 59: The Plastic Eater by Kit Pedler and Gerry Davis – a genetically engineered bacterium starts eating the world’s plastic

1980 Russian Hide and Seek by Kingsley Amis – in an England of the future which has been invaded and conquered by the Russians, a hopeless attempt to overthrow the occupiers is easily crushed
1981 The Golden Age of Science Fiction edited by Kingsley Amis – 17 classic sci-fi stories from what Amis considers the Golden Era of the genre, namely the 1950s

The Sixth Extinction by Richard Leakey and Roger Lewin (1995)

As a recent article by Tim Flannery in the New York Review of Books explains:

Ever since Richard Leakey and Roger Lewin published The Sixth Extinction in 1995, we have known that humanity is extirpating species at a rate unmatched since the demise of the dinosaurs 65 million years ago. Hunting, deforestation, the introduction of nonnative organisms and diseases, and now climate change have increased the rate of species loss to the point that scientists fear for the functioning of entire ecosystems…

In this pioneering book, Leakey and Lewin take us by the hand through recent (in 1995) discoveries in ecology, palaeontology, palaeoanthropology and geology, to present a whole new worldview, a new way of seeing the natural world and our place in it.

1. Human evolution is a random accident

This is that we – human beings – are NOT the product of some ineluctable force driving evolution towards higher and more sophisticated species and, ultimately, towards Mind and Consciousness. We are emphatically not the pinnacle of the universe. The reverse: we are a cosmic accident. We now know that the long fossil record of life on earth has been marked by countless disasters, accidents, extinctions, most of which have no intrinsic or logical rationale, and that we are the incredibly fortuitous outcome of these massively random events.

2. There is no balance of nature

Older naturalists held that there was a Balance of Nature whereby the complete global system of life worked together to keep things – oxygen levels, complex ecosystems – in a careful balance which favoured the optimum thriving of life forms. But the closer we look at the record, the more obvious it becomes that there is no balance of nature. The more we learn, the more we realise that nature is in fact given to chaotic  and random fluctuations. It is also much more complex than we ever suspected.

3. Fluctuation and accident are the norm

Taken together, these two ideas suggest that flux and fluctuation are an intrinsic part of the history of life on earth.

Humans long for predictability, in relation to the world of nature around us and, most particularly, in relation to our own existence and our future. But it is obvious that, in the realm of evolutionary biology and ecology, ours is an unpredictable world and our place in it an accident of history; it is a place of many possibilities that are influenced by forces beyond our control and, in some cases at least, beyond our comprehension. (p.231)

4. Extinction events

The most dramatic embodiment of this fluctuation – and of the workings of chance – are ‘extinction events’. In the 540 million years since multicellular life suddenly arose in what scientists call ‘the Cambrian Explosion’, there have been no fewer than 15 ‘extinction events’. These are relatively short periods in which – for some reason – the fossil record shows that between 15% and 40% of all species went out of existence, never to return.

Among these 15 were five really big extinction events, ‘the Big Five’, in each of which over 60% of all species went extinct. And king of the Big Five is one real monster, the extinction event at the end of the Permian Era, 250 million years ago, when an estimated 95% of all terrestrial species on earth were wiped out!

The more we learn about the extinction events, the more obvious it becomes that we are the lucky survivors of the lucky survivors of the lucky survivors of a whole series of catastrophes, not through any intrinsic merit in our forebears (who, if you go back far enough, were worms) but from sheer dumb luck.

5. Darwin’s theory of evolution is over-ridden by extinction events

Darwin’s theory of evolution through natural selection is undoubtedly the mechanism by which new species come into being and by which all life forms are continually competing with all others. But in Leakey’s view, Darwin’s theory is only relevant in the relatively stable periods between these global catastrophes. These periods have lasted tens, sometimes hundreds of millions of years – but the history of life on earth is certainly not the slow, steady evolution of more and more sophisticated life forms, as portrayed in older evolutionary theory.

Instead Darwin’s process has been overshadowed time and again – in terms of impact of the history of life on earth – by extinction, catastrophe and random events. In other words, by the accidents and arbitrariness of History.

6. Humans are the most destructive species on the planet

This new emphasis on the importance of destruction, of the really breath-taking mass extinction of life forms, in the long story of life on earth, dovetails with other, recent discoveries about man’s role in nature. For a variety of sources now suggest that Homo sapiens is and always has been, immensely destructive of the ecosystems around him.

  1. For a long time Europeans have thought that when European explorers and colonisers encountered native peoples in places like America, the Pacific islands, Australia and so on, those peoples were living in a blessed ‘harmony’ with nature. Only in recent decades have scientists realised that the supposedly ‘pristine’ environments of all these places had in fact been severely damaged by the arrival of those peoples. One of the most dramatic examples is Hawaii, which looks like a tropical paradise to tourists, but where we have now discovered evidence that the hunter-gatherers who arrived there 1,500 years ago proceeded to burn down much of the rainforest and wipe out most of the larger species, including a majority of the bright songbirds.
  2. This pattern has been replicated wherever humans appeared, most notably in the Americas, where the arrival of the first hunter-gatherers around 12,000 years ago across the then-existing land-bridge from Asia, and their slow spread southwards, coincides exactly with the extermination of the continent’s megafauna i.e. all its large mammals. There is debate about whether other factors were involved as well but the case of New Zealand presents the case with brutal clarity. The Maori only arrived there 1,000 years ago, and promptly cleared much of the rainforest and hunted all the species of flightless birds and large mammals to extinction. So the native peoples which European explorers encountered in the 16th, 17th and 18th centuries were far from living in harmony with nature; they were living amid the ecological devastation their ancestors had wreaked wherever they – wherever humans – went.
  3. In the 1990s (this book was published in 1995) everybody knew that tropical rainforests around the world, especially in the vast Amazon basin, were being destroyed at an unprecedented rate (an acre a minute is one calculation), each acre home to millions of species. Since then the news about endangered species or about the rainforests has been overshadowed by the growing sense of crisis about man-made global warming. This has distracted attention away from the story on the ground, which is the alarming rate at which we are continuing to exterminate species throughout the world by the incessant demands of an ever-growing population. When Leakey wrote this book there were 6 billion people in the world. Now that number is 7.5 billion and climbing. The pressure to destroy natural habitat to convert it to farm or grazing land, along with the relentless polluting of the seas, the rivers and the air, can only escalate.

7. Humans are responsible for the sixth mass extinction event in global history

Having given a thorough account of modern understanding of the 20 or so extinction events which punctuate the fossil record – and especially of the Big Five in which 60%-plus of species went extinct – Leakey’s last chapters introduce us to the final conclusion of their long survey – the idea that we, Homo sapiens, are now having such a destructive impact on the natural world that many if not most environmentalists think we are living through the Sixth Mass Extinction of life on earth.

This is an event so momentous that many geologists and evolutionary scientists think it deserves to be defined as a distinct geological era – the Anthropocene Era – the era in which we human beings are irreversibly destroying the vast majority of life forms on the planet we share with them, on a scale only comparable with the devastation caused by the Big Five extinction events.

We are destroying the world.


Leakey and Lewin

Richard Leakey (b.1944) is a paleoanthropologist and ecologist, born and bred in Kenya, where he made significant discoveries of fossils of early humans, before going on to run the country’s national museums and then become its overall Director of the Wildlife Services.

Roger Lewin (b.1944) is a British prize-winning science writer, a staff member of New Scientist for nine years before going to America to become News Editor for Science. He’s written about 20 books, including three in collaboration with Leakey.

The first two of their collaborations are about Leakey’s work into the origins of the human species, in and around Lake Turkana in the north of Kenya, part of the enormous Rift Valley. Due to the fact that hominids need water, and the mud around rivers and lakes preserves footprints and the bones of dead animals better than the harsh savannah or bare rock, Lake Turkana has been a goldmine for fossil hunters looking for relics of our earliest ancestors. In his early explorations, Leakey’s team discovered Turkana Boy, the most complete early human skeleton ever found, believed to be between 1.5 and 1.6 million years old.

In the late 1980s Leakey’s interest shifted away from paleoanthropology towards wildlife conservation and ecology. This book – itself now quite dated – combines his two areas of expertise to give a thorough and quite academic history of the evolution of life on earth and to situate the evolution of hominids and Homo sapiens within it, before going on to present its Big Issue.

Key dates

  • Age of the universe – 13.772 billion years
  • Age of the solar system – 5 billion years
  • Age of planet earth – 4.6 billion years
  • Simplest life forms – prokaryotes, single-celled organisms which lack a nucleus -3.5 billion years ago
  • Eukaryotic organisms, whose cells contain a nucleus – 1.8 billion years ago
  • 530 million year ago – the Cambrian Explosion, when suddenly a huge diversity of multi-celled life forms and body shapes and sizes emerges in the fossil record
  • The Cretaceous Period, the last and longest segment of the Mesozoic Era, lasted approximately 79 million years, from the minor extinction event that closed the Jurassic Period about 145.5 million years ago to the Cretaceous-Paleogene (K-Pg) extinction event dated at 65.5 million years ago. Period when ‘dinosaurs ruled the earth’.
  • 7 million years ago, approximate parting of the line which led to humans from the lines which led to the great apes
  • 150,000 years ago, evolution of the new species, Homo sapiens
  • 13,000 years ago – end of the last Ice Age triggers the invention of agriculture in the Fertile Crescent, which slowly spreads around the globe and with it the arrival of what we like to call human ‘civilisation’

It’s from the Cambrian Explosion – 530 million years ago – that everything most of us think of as life forms – fish and dinosaurs, plants and trees, then later we mammals – derive. Most of the epochs and periods we hear about – Jurassic, Triassic etc – occur during that 530 million period, most fossils of life forms derive from that period.

The sixth extinction

The central premise of the book, which gives it its title, is that, over the half-billion-year history of multi-celled life on earth, there have been a number of ‘moments’ in the geological record when a significant percentage of the flora and fauna of a certain era seem to have died out very suddenly (in geological terms) – known as ‘mass extinction events’. Having explained the background and possible reasons for them, the book then goes on to point out that we are living through a sixth mass extinction event, in which huge numbers of species are being driven to extinction. There is no doubt at all what is causing it: it is us – humans. Human beings are wiping out the earth’s ecosystems and wildlife.

The ‘Big Five’ mass extinctions

The Big Five are defined as extinction events in which at least 65% of species were obliterated. The end-Permian is the biggest, in which an estimated 95% of species on earth were wiped out.

  • at the end of the Ordovician Period – 440 million years ago
  • the Late Devonian 365 million years ago
  • the end-Permian 225 million years ago
  • the end-Triassic 210 million years ago
  • the end-Cretaceous 65 million years ago

There is huge debate about the possible causes of these great ‘dying outs’. Climate change? The conglomeration of all the continents through continental drift into one mega-continent? The most dramatic suggestion, first mooted in the 1970s by a team led by Luis Alvarez, is that it was asteroids. They found thin layers of iridium at the archaeological line marking the end of the Cretaceous period, an element which is extremely rare on earth but is found in asteroids. This discovery has been replicated at other end-Cretaceous sites, and then a candidate for the giant crater caused by a monster asteroid was discovered on the coast of Mexico. The idea is simple: monster asteroid hits earth with the power of a million hydrogen bombs, throws up vast amounts of dirt and dust into the air which blocks out the sun, as well as triggering widespread volcanic activity. Result: mass extinctions of life.

There’s a lot of evidence for it, but archaeologists and biologists are an argumentative lot, as this book amply demonstrates, and other scientists have piled in to claim that asteroids might have put only the finishing touches to what other causes – climate change, sea level rises, environmental or atmospheric fluctuations and so on – had started. Others – David Raup and Jack Sepkoski – have pointed out that there have been over twenty extinction events over that half billion year span, of which the Big Five are only the most notable (p.56), and which occur at roughly 26 million year intervals. Only the recurrent arrival of a shower of asteroids could explain this regularity, although more recently doubt has been cast on the evidence for this neat pattern. But there’s no doubting, now, that externally-prompted mass extinctions have been a recurrent feature of terrestrial evolution.

Which gives rise to an immense debate about the deep meaning of the theory of evolution, which can be summarised in the phrase ‘bad genes or bad luck’. Is there an inevitability in the way life has evolved? If we ran the tape of evolution again, would life forms turn out much as we see them around us? Is there a kind of deep logic to the way things would have evolved, to fit the available niches?

Or has the evolution of life on earth been subject to mind-boggling accidents and contingency? Could things easily have turned out wildly differently? Was it the merest luck which led to the various mass extinctions, to the death of the dinosaurs 65 million years ago, to the rise of the mammals and then, right at the end of this string of improbable accidents – to us, reading these words?

These and many related questions are tackled – with the help of quite technical diagrams and explanations – in the first half of the book. It takes a few rereadings to get the timelines clear in your head, and then more rereading to understand what the numerous debates are about.

For example, uniformitarianism is the idea that evolution takes place gradually and slowly over vast periods of time. Darwin had to arrive at his theory by battling essentially religious ideas that species were suddenly created by a Creator God, so he and his followers were vehement uniformitarianists. However, from the birth of geology as a science in the early 19th century, geologists recognised sudden abrupt changes in the record – catastrophic changes in the fossil record which the extinction events seem to support. Broadly this view of evolution is called catastrophism. The American paleontologist and evolutionary biologist Stephen Jay Gould developed his own version of catastrophism, which he called punctuated equilibrium – long periods of stasis interrupted by abrupt changes in earth’s biota, or life systems. Modern thinking about the importance of mass extinction events has led to what some call ‘neo-catastrophism’ i.e. Darwin’s laws work most of the time, except when some external force steps in to overshadow them – be it drastic climate change, asteroids, volcanic activity, sea level changes or whatever.

Man the destroyer

We are but one of millions of species here on earth, products of half a billion years of life’s flow, lucky survivors of at least twenty biotic crises, including the catastrophic Big Five. (p.71)

But these and various other theories and debates about the detail of historical evolution are really just the background, the introduction to the meat of the book, which is a lament for man’s destruction of the natural world. Leakey uses numerous examples to show how modern science has revealed just how much life there is, all around us.

He reports Danish scientists who investigated one square metre of tropical rainforest and discovered 46,000 earthworms, 12 million roundworms and 46,000 insects. Just one gram of this soil contained more than a million bacteria, 100,000 yeast cells and 50,000 fragments of fungi (p.136).

The rape and destruction of the earth which we are causing is mind-blowing. It is estimated that ‘we are losing upwards of 80,000 acres of tropical rainforest daily, and significantly degrading another 80,000 acres every day on top of that. Along with this loss and degradation, we are losing some 135 plant, animal and insect species every day – or some 50,000 species a year.’ (Scientific American)

But all that’s new is the scale: man has always been a destroyer. Between 12,000 and 10,000 years ago 50 or so large mammal species went extinct in North America. The extinctions coincided with the arrival of the first peoples from Asia (across the land bridge across what is now the Bering Straits) and their slow fanning out across the continent. Although some paleontologists prefer climate change or disease as the cause, many think these first human settlers of the Americas hunted its large mammals to extinction. This theory is called the Overkill hypothesis. The case is even clearer in New Zealand, which Maori colonised about 1,000 years ago and where they hunted the large flightless birds to extinction, while the rats they’d brought from Australia wiped out whole systems of ground-roosting birds and other fauna.

‘The notion of man-the-exterminator is secure in New Zealand.’ (p.186)

Same on Hawaii (pp.188-190).

Numbers

How many species are there on earth? Nobody knows. Leakey quotes an early estimate from the 1960s of 3 million. Terry Irwin, in 1982, estimated there may be 30 million species of insects alone in the rainforest canopy. Elsewhere, Leakey quotes estimates of the total number of species as 50 million, and then references Robert May’s speculation from the 1990s that there may be as many as 100 million species. These appear to be the end points, which is why later articles refer to ‘anywhere between 3 and 100 million’.

More recently, a 2011 estimate using a new methodology gives the total number of species in the world as 8.7 million – 6.45 million on land, 2.2 million in the sea. According to this calculation, 86% of all species on land and 91% of those in the seas have yet to be discovered, described and catalogued. But googling the subject, though, one comes across a bang up-to-date estimate from 2016 which says there might be as many as 1 trillion species on earth!

In other words, despite E.O. Wilson’s calls for governments to invest more in finding out how many species we share the world with – a plea from the 1990s quoted in this book (p.123) – we still haven’t a clue how many there are. What we can be confident about is that we are wiping out most of the species we share the earth with before we ever get to discover, identify, record or analyse any of them.

In fact, we don’t even know precisely how many species have been identified and catalogued. It appears to be about 1.25 million species – roughly 1 million on land and 250,000 in the oceans – but as many as 700,000 more are thought to have been described by local scientists which have yet to reach the central databases and so be included in global counts…

Value in diversity

How do we preserve nature? Well, in our demystified, instrumental, capitalist world, we have to give it a value, the only thing most people understand. Leakey identifies three types of value:

  1. Tangible benefits we can extract from the environment, such as food, raw materials, medicine.
  2. Maintenance of the environment: we need the full web of life to continue its circulation of gases, chemicals and moisture in order to make the world inhabitable by humans.
  3. Psychological health: most people with the money, prefer to live in the country, people like to visit and roam in the country, patients in hospital with a bed by a window in a green space have better recovery rates than patients in a windowless room. The presence of greenery and nature keeps us psychologically healthy – and that greenery doesn’t exist in the abstract – it is made up of incalculably complex webs of organisms. E.O. Wilson has named this sense ‘biophilia’.

Food and drugs are the obvious ones. The world is dangerously dependent on monocultural varieties of a handful of food crops. If a pest devastated the world’s wheat or rice crops, billions would starve. Wild varieties contain genes we haven’t identified or analysed which would provide important genetic variations which could help develop new varieties, if the worst ever happened.

Similarly, important worldwide medicines have been sourced from wholly unexpected wild plants and flora. Aspirin and penicillin are the two obvious examples, which changed the world and saved hundreds of millions of lives. Who knows what cures for cancer or AIDS may be lurking undiscovered in some of the 250,000 species of plants? And in species we are merrily burning to extinction every day?

Theories and ideas

Even twenty years ago when this book was published, all educated people should have known about the destruction of the rainforests and endangered species. That aspect shouldn’t be news to anyone. I think the real revelation of this book is the extraordinary complexity and difficulty of ecological and biological and archaeological science – the range of areas and levels and expertises which are now brought to bear on the natural world, the complexity of computer models and the plethora of rival theories.

Leakey’s book is in many places quite dauntingly technical. Plenty of paragraphs contain numbered points or aspects or theories which we need to learn and bear in mind. For example, we learn about:

  • Allopatric speciation – or geographic speciation is speciation that occurs when biological populations of the same species become vicariant, or isolated from each other to an extent that prevents or interferes with genetic interchange.
  • Cambrian Explosion – ‘the relatively short evolutionary event, beginning around 541 million years ago in the Cambrian period, during which most major animal phyla appeared, as indicated by the fossil record’ (Wikipedia)
  • Chaos theory as it applies to ecosystems i.e. modern understanding has undermined the notion of a ‘balance of nature’ to reveal that all systems, even without any external influence, tend to boom and bust and be subject to other ‘internal’ pressures which create fluctuations. I.e. every ecosystem, and nature as a whole, is much more chaotic and unstable than had been appreciated.
  • The ‘protective network‘ of an ecosystem which places an ‘activation barrier‘ around it to prevent new species intruding (p.162-3).
  • The rivet-popper hypothesis and the redundancy hypothesis of how ecosystems are degraded. Rivet-popper = each species in a system is like the rivets in a ship – you can remove one or two without noticing but the more you remove the more you weaken the system until it reaches collapse. Redundancy = most species are passengers on a system held together by a few lynchpin systems: you can remove most with no change; but remove the lynchpins and the system collapses. (pp.140-141)

The relative importance of ‘history’ and evolution

One of the big points Leakey makes is that in his time older ideas like ‘the balance of nature’ and even the primacy of natural selection, have been thrown in doubt. Nature now appears to be much more chaotic than previously suspected. And he explains recent work which suggests that the world we see around us is radically contingent. Archaeologists examined the fossil record of animals off the North Atlantic coast over the past 60 million years, a huge duration during which sea levels rose and fell six times. They discovered that mature ecosystems repopulated the dry land once it was reflooded – but each time it was repopulated by a different combination of species. I.e. the reappearance of life was ‘inevitable’ – but which specific species fill all the niches and grow into a tangled web of an ecosystem – it can be different each time. There is nothing intrinsic or inevitable about the flourishing of particular species or combinations of species in ecosystems. Shake the dice and you get a different set.

As Leakey puts it, History matters. Life there will be, but what forms of life and how they combine, even in the same environment, can vary hugely depending on chance factors. Thus Darwin’s theory of evolution by natural selection still gives the best account of how species evolve over time – but in seeking an explanation for the natural world as we see it, the theory of evolution is dwarfed by the random events of what we call ‘history’.

Insights into human history

Obviously Leakey’s main concern is with nature and ecology but for someone like me who knows more about history than I do about biology or ecology, the multiple insights a scholarly book like this gives the reader into the natural world can also shed tremendous light on the deeper meaning of human history.

I’ve just finished Alan Taylor’s epic account of the colonisation of America. In it he emphasises that it wasn’t just European humans who arrived in the New World, but that they brought from the Old World , in order of importance – their devastating new diseases, new plants and new livestock. These spread like wildfire across the virgin continent, the diseases wiping out up to 95% of the native inhabitants of the Americas, while new plants spread like weeds, and livestock drove American rivals extinct.

Quite apart from its ostensible purpose as a warning and a plea, a book like Leakey’s can immeasurably increase our understanding of human history by giving us a deep sense of the mind-boggling complexity of the natural world which human beings have been blundering around, reshaping and destroying, burning and deforesting and planting and mixing up, for centuries – the process we refer to as ‘history’.

It makes us realise what was at stake back then, as well as now. It makes us realise the depth of the damage we have been doing, and for centuries.

Attitude

Obviously the planet is indifferent to individual human opinions, attitudes and stands. Clicking ‘like’ on facebook to a photo of a polar bear or the rainforest isn’t going to change anything. Only a wholesale and comprehensive change to all of our lifestyles, combined with drastic attempts to control and reduce human population, will have any real, practical impact on the problem.

On a personal level, this knowledge does suggest a truer, more accurate understanding of human nature (destructive) and our place in the natural world (destructive) which should have a chastening effect on everything we think and do. It transforms our understanding and it should transform our behaviour.

From time to time Leakey mentions, or quotes other ecologists criticising, humanity’s ‘narcissism’ or ‘arrogance’, each of us infested with thoughts and feelings and desires which a) are ultimately trivial b) obscure to ourselves our fundamental role as destroyers of the environment.

A correct attitude, the accurate honest attitude to the devastation we cause, would be one of modesty, shame and penance.

In a way, understanding these issues better should lead us to a kind of attitude and – ideally – lifestyle, characterised by simplicity and humility. All of us need to consume less, vastly less, than our arrogance and ignorance and selfishness prompt us to.

A proper understanding of our place in the world should lead to the virtues praised by monks and nuns of all religious orders: shun the world, shun consumption, shun exploitation, work in humility and honesty to supply our bare needs. Only then, maybe, despite all the evidence to the contrary, might there be a slight possibility of hope that we do not exterminate most life forms on the planet including, of course, many that we depend and rely on for our own existence.

In order to know ourselves as a species and to understand our place in the universe of things, we have to distance ourselves from our own experience, both in space and time. It is not easily done but it is essential if we are truly to see a larger reality. (p.6)


Related links

The Origin of Our Species by Chris Stringer (2011)

This is a very demanding and scholarly book. In the last thirty years major leaps forward in DNA science, the technology of dating fossils, our ability to CT scan and analyse old bones and skulls right down to atomic level and other impressive techniques, as well as a steady stream of new finds of the remains of our prehistoric ancestors, have hugely deepened and complicated our knowledge of human ancestry, of the lineage which stretches back 6 million years to when our ancestors split from the ancestors of modern apes. It’s a massive, complicated and ever-changing field of knowledge.

As the blurb on the back points out, Chris Stringer has been closely involved in much of the crucial research into the origins of humankind and sets out in this book to explain all the latest research, techniques, discoveries and theories in the area, which he does comprehensively and thoroughly.

However, the patchiness of the evidence, the changing results given by evolving techniques, the legacy of sharply conflicting theories and interpretations etc, take a lot of explaining and putting into context. As well as the actual finds and the science we use to interpret them, the book slowly opens up a jungle of differences and debate between archaeologists, paleo-anthropologists, psychologists, DNA researchers, ancient historians and so on, at numerous levels, from large-scale over-arching theories to the interpretation of almost every single find and specimen.

Chapter by chapter, Stringer introduces us to all the evidence and all the techniques and all the controversies – but it is a lot to take in. It doesn’t help that the same theories, techniques and finds recur in different chapters, but in the context of different approaches or discussion of different theories or ideas. You need your wits about you. It’s a book to be read at least twice.

Two theories of human origins

In 1988 Stringer co-wrote an article titled Genetic and Fossil Evidence for the Origin of Modern Humans. This sketched out the two main theories about human origins: Recent African Origin (RAO) and Multiregional Evolution.

1. The multi-regional theory dates from the 1930s and believes that Homo erectus (himself descended from Homo habilis and a distinct species by about 2 million years ago) spread out from Africa over 1 million years ago, settling across Eurasia and Africa, and it was these scattered populations who all transitioned to modern man, Homo sapiens, although with variations which explain the different appearance of modern ‘races’.

2. Recent African Origin (also known as the ‘Out of Africa’ theory) agrees that Homo erectus spread across Eurasia by around 1 million years ago (the original or ‘Out of Africa 1’ scenario), but then postulates the separate development of ‘modern’ man (Homo sapiens) around 100,000 years ago, probably in East Africa. These modern humans also spread out beyond Africa (in so-called ‘Out of Africa 2’), superseding (overwhelming, conquering, killing?) their more primitive cousins wherever the two came into contact.

But a) there are numerous other theories which conflict with both the above, starting with an ‘Assimilationist’ theory, e.g. that Homo sapiens bred with Homo erectus rather than wiping them out; and b) almost every year brings new discoveries which throw up new puzzles and complicate the picture. Also c) Homo sapiens himself seems to have undergone a sudden burst of technological, cultural and social complexity around 50,000 years ago, when better tools, cave art, necklaces etc suddenly appear in the fossil record. It was this new, improved Homo sapiens who appears in Europe from 35,000 years ago. How does that fit into the timeline?

Neanderthal Man In Europe a distinct branch of humans was named Neanderthal Man (after the first specimen whose skull and bones were found in the Neander Valley in Germany in 1856). Neanderthal bodies were bigger, more muscly than ours, they had significantly larger brain cases (as Stringer humorously points out, in brains as with other things, size is not everything) but their most notable feature was really thick, heavy, threatening brow ridges over the eye sockets. Neanderthals are generally considered a distinct species, Homo neanderthalensis, and are thought to be descended from a more primitive species, Homo heidelbergensis, itself a branch of Homo erectus. Nenaderthal man became distinct from Heidelberg man around 600,000 years ago. (Typically, some paleoanthropologists disagree with the whole notion of defining these different specimens as distinct species, and consider Neanderthals and all the other ‘types’ which have been found in the past 150 years to be subspecies of Homo sapiens – thus Neanderthals would be Homo sapiens neanderthalensis).

One of the most intriguing questions remains what it was when I was a boy: We have evidence that modern man (often called Cro-Magnon Man in his European incarnation, after the cave in south-west France where the first specimen was found in 1868) and Neanderthal man both inhabited Europe at the same period, around 40,000 years ago (the Neanderthals having been around in Europe for hundreds of thousands of years, modern man being a new thing, fresh out of Africa). Shortly after the arrival of modern man, records of Neanderthals come to an end; there are no specimens more recent than 30,000 years ago.

So, did we wipe Neanderthals out? Archaeologist Nicolas Teyssandier has noted the period of overlap of the last Neanderthals and the first Moderns is characterised by a profusion of different types of spear tip – was there a stone age arms race? Or did ‘we’ interbreed with Neanderthals to become a cross-breed, Neanderthal records stopping because they had been ‘assimilated’ into our line – so that each of us has a little Neanderthal blood in us? Or did Neanderthals die out due to climate or other changes which they were too dim to adapt to, but which we with our super-smart brains managed to survive? The theories have become more intricate as new DNA evidence has emerged – but to this day, no-one knows.

Homo sapiens (left) Homo neanderthalensis (right)

Homo sapiens (left) Homo neanderthalensis (right)

Homo heidelbergensis This is another distinct form of human, that lived in Africa, Europe and western Asia between 600,000 and 200,000 years ago (and named after the first specimen, discovered in 1907 near the German town of Heidelberg). Some paleoanthropologists think that a population of heidelbergensis migrated into Europe and western Asia between 400,000 and 300,000 years ago and evolved into Neanderthal man. A later branch of the same family had evolved into Homo sapiens in Africa by around 130,000 years ago and then also spread into south-west Asia and Europe where, for 100,000 years, both related species lived alongside each other.

Periods

The Pleistocene period is said to date from 2.5 million years ago (Ma) to 12,000 years ago.

The Stone Age or Paleolithic period period lasted roughly 3.4 million years and ended between 8700 BC and 2000 BC, with the advent of metalworking (the date varying according to location, since different human groups developed metal work at different dates).

The Lower Paleolithic Period is 2,500,000 to 200,000 years ago. The Middle Paleolithic is the era during which the Neanderthals lived in Europe and the Near East, c. 300,000–28,000 years ago. The Upper Paleolithic dates from 50,000 to 10,000 years ago in Europe, ending with the end of the Pleistocene Era and onset of the Holocene Era at the end of the last ice age.

The Holocene Era is marked by the end of the ice ages around 13,000 years ago, followed swiftly (in the Fertile Crescent of modern Iraq) by the birth of agriculture, in what Jared Diamond calls ‘the Neolithic Revolution’. This saw humans transition from a life of hunting and gathering to one of agriculture and settlement, a transition whose causes and implicatoins Diamond deals with at length in his classic book, Guns, Germs and Steel.

Dating technologies

The modern technology used to date fossils and ancient remains is now bewilderingly complex and dauntingly sophisticated. Here are some terms; if you’re interested, you’ll have to google them for full accounts.

  • ABOX Acid Base Oxidation-Stepped Combustion pretreatment methods for dating charcoal thought to be over 30,000 years old
  • AMS accelerator mass spectrometry – a technique for measuring long-lived radionuclides that occur naturally in our environment
  • CT computerised tomography X-ray scan
  • ESR electronic spin resonance, method of dating
  • OSL – optically stimulated luminescence
  • TL thermoluminscence dating technique

New words and acronyms

I’m a humanities graduate, not a scientist; I get pleasure from new words and from new concepts (even ones I don’t fully understand).

  • Allen’s Law – animals in cold climates have low surface-to-volume ratios; animals in hot climates, the reverse.
  • atlatl – a spear thrower.
  • Biological Species Concept – the notion that species are defined as groups which can interbreed
  • burins – engraving tools.
  • CI Campanian Ignimbrite – debris from a huge volcanic explosion which took place in Campania, central Italy, 39,000 years ago.
  • Doggerland – the area of land that connected Britain to mainland Europe during and after the last Ice Age until it was flooded by rising sea levels around 6,500–6,200 BC.
  • Dunbar’s Number – after researching primate brain size against the size of their social groups British anthropologist Robin Dunbar estimated that humans can only form meaningful relationships with a maximum of 148 (generally rounded up to 150) other individuals.
  • EQ – encephalisation quotient, the ratio of brain volume to body mass.
  • glottology – the history or science of language.
  • Heinrich Event – brief but severe cold events when icebergs break off from northern ice caps and float south chilling the ocean and surrounding lands (pp.93-94)
  • microtephra – dust from a volcanic explosion which is invisible to the eye.
  • morphometrics – measuring shapes.
  • sapropels – dark layers of sediment laid down where the Nile reaches the Mediterranean.
  • survivorship – the proportion of a population surviving to a given age.
  • tang – edge or shoulder of a triangular stone point used to mount it as a projectile on a wooden handle.
  • varves – annually deposited layers in the bottom of deep lakes.

Snippets

  • Anthropologist Grover Krantz strapped on a fake thick protruding ‘brow ridge’ from a Homo erectus skull, and wore it for months (!) to see what advantages it brought. He discovered that it kept his hair out of his eyes, shielded his eyes from the sun – and scared the daylights out of people he met on dark nights. Stringer takes this last point seriously, saying the heavy brows of our ancestors possibly accentuated their stare, giving them an aggressive attitude which helped them intimidate other males and woo females, in the struggle for existence. (p.32)
  • Apparently, there are rumours in the paleoanthropology world that either the Americans or the Russians or both, in the 1940s and 50s, experimented by injecting human sperm into female chimps, bringing the resulting creatures to birth and experimenting on them. (p.33)
  • Male baboons gently fondle each other’s scrotums as a sign of friendship and trust – a defeated chimpanzee makes submissive noises and holds out its hand to the victor – if accepted the victor will embrace and kiss the supplicant, if rejected, he’ll bite it. (p.131)
  • Fire dates to around 1.6 million years ago in Africa, 800,000 years ago in Israel, 400,000 years ago in Britain. (p.140)
  • The Grandmother Hypothesis developed by James O’Connell and Kristen Hawkes proposes that human evolution favoured older women who lived on after the menopause (something which doesn’t happen in primates) who can help their daughters with child-rearing and food-gathering. (p.141)

Conclusion

The ninth and final chapter presents a conclusion of sorts – which is that, having extensively reviewed the current evidence, Stringer has modified his lifelong adherence to the Recent African Origin thesis in several ways:

  1. The one that surprised me the most has to do with the size of the communities we’re talking about. Up-to-date genetic evidence suggests that the groups which left Africa and moved out to populate Arabia and around the Indian coast, might have numbered in the hundreds. Even within Africa the various species may at any one time have only numbered in the thousands. (‘The long-term effective size of the ancestral population for modern humans might have been only about 10,000 breeding individuals’, p.175, whereas the number of breeding Neanderthal females in Europe might have been as little as 3,500). Given these numbers, the extinction of the Neanderthals is changed from being some kind of war of extermination (as it is sometimes painted) into the dwindling and going defunct of already tiny scattered communities (and the most attractive interpretation Stringer gives for this is the notion that Neanderthals were just bigger, heavier and needed more food than the lighter, nimbler Home sapiens – maybe in the unstable climatic situation in Europe 30,000 to 40,000 years ago, small and clever was simply more adaptable).
  2. The last two chapters bring together evidence which Stringer says can be interpreted, in light of these small numbers, to suggest a new hypothesis – that there were, at any given time, multiple human species living in Africa (he repeats several times that modern-day Africans show vastly more genetic diversity than any other continent – modern DNA evidence suggesting that the populations of Asia, the Far East, the Americas, Australia derive from very small bands of ancestors populations with the genetic diversity of modern populations dropping the further you go from the African source). In other words, the linear model of one species evolving into another species has been replaced by a much more complex scene of multiple species or sub-species flourishing in different places at different times. ‘100,000 years ago Africa may have comprised a collection of separate sub-groups’ (p.244). The evidence now suggests ‘that Africa contained archaic-looking people in some areas when, and even long after, the first modern-looking humans had appeared’ (p.255). In other words, the multiregion theory could be true within Africa, where multiple species, sub-species, varieties and groups of humans evolved along separate lines, developing widely different levels of tools, some isolated, some inter-breeding and leaving behind a patchwork of random relics to puzzle and confuse 21st century paleoanthropologists trying to create one continuous narrative.
  3. A recurrent problem in this new, more complex picture is that ‘superior’ technologies or skills seem sometimes, in some areas, to be replaced by inferior ones. Stringer uses the analogy of fires or beacons flaring up in the immense darkness of Africa for a millennium or so, then going out. Why? The brief answer, as with so much paleoanthropology, is that no-one knows. Climate change? Genetic drift? Drought, famine, conflict? But the stops and starts certainly fit with the newish idea of much greater diversity, variation, and contingency in our evolution than had previously been suspected.
  4. All of which brings Stringer to modify his initial RAO thesis: maybe there wasn’t one, but multiple out-of-Africa events. To me, as a layman, this doesn’t seem that surprising. Pre-human species didn’t have maps: they didn’t know they were ‘leaving’ Africa; they were just roaming, hunting and gathering wherever food could be found. It makes more sense to think there would have been multiple ‘exits’ from Africa. If our theories only posited two until recently, that could be because the archaeological record is so thin and patchy as not to spot the others – or it could be that numerous other ‘exit’ populations went extinct leaving no fossil or genetic trace. We think the exit event which led to us is important because it led to us; but it might have been just one among many, and its survival down to pure chance.
  5. And this leads to perhaps the most unsettling thought, which is all these theories tend to undermine our specialness. Even within scientific communities there has been a consensus that Homo sapiens is special because ‘we’ ended up inventing agriculture, cities, religion, states, navies, trains, rockets and all the rest of it – and therefore a tendency to try and identify the reason for that specialness and the moment when that specialness took hold. (Stringer thinks something happened around 50,000 years ago to change human behaviour, nudging it towards greater inventiveness – climate, size of social groups, who knows; but there are scores of other theories – he mentions the ‘Broad Spectrum Revolution’ theory proposed by Lewis Binford and Kent Flannery, a coming-together of climate, population size and innovation which they date to 20,000 years ago). But what if we’re not that special. What if Neanderthal man or some of the more obscure relics, such as Homo floriensis (the so-called ‘Hobbit’, a short version of modern humans found only in East Asia) or other sub-species and hominins as yet undiscovered, had just as much potential to develop and ‘succeed’ – but existed in such small populations that fairly limited events (drought, volcanic eruption, sudden chilling in an ice age) wiped them out and happened, just happened, to leave the field open to us? What if ‘we’ are only here by the merest luck or fluke but – with the arrogance typical of our species – have taken this as giving us an entirely spurious specialness, giving us the right to lord it over the earth and all the other species, when in fact our lucky ancestors just happened to be in the right place at the right time, or not to be in the wrong place at the wrong time…

Credit

The Origin of Our Species by Chris Stringer was published by Allen Lane in 2011. All quotes and references are to the 2012 Penguin paperback edition.

Related links

Other science blog posts

%d bloggers like this: