Life At The Speed of Light: From the Double Helix to the Dawn of Digital Life by J. Craig Venter (2013)

The future of biological research will be based to a great extent on the combination of computer science and synthetic biology. (p.204)

Who is Craig Venter?

The quickest way of getting the measure of this hugely clever, ambitious and visionary man is to quote his Wikipedia entry:

John Craig Venter (born October 14, 1946) is an American biotechnologist, biochemist, geneticist, and businessman. He is known for leading the first draft sequence of the human genome and assembled the first team to transfect a cell with a synthetic chromosome. Venter founded Celera Genomics, The Institute for Genomic Research (TIGR) and the J. Craig Venter Institute (JCVI), where he currently serves as CEO. He was the co-founder of Human Longevity Inc. and Synthetic Genomics. He was listed on Time magazine’s 2007 and 2008 Time 100 list of the most influential people in the world. In 2010, the British magazine New Statesman listed Craig Venter at 14th in the list of ‘The World’s 50 Most Influential Figures 2010’. He is a member of the USA Science and Engineering Festival’s Advisory Board.

So he’s a heavy hitter, invited to Bill Clinton’s White House to announce his team’s successful sequencing of the first human genome on 2000, founder of a thriving biochem business, a number of charities, pioneer of genomics (‘the branch of molecular biology concerned with the structure, function, evolution, and mapping of genomes’) and mapper of an ambitious future for the new science of synthetic biology.

In Schrödinger’s footsteps

Life At The Speed of Light was published in 2013. It originated as a set of lectures. As he explains in the introduction, in 1943, the Austrian physicist Erwin Schrödinger had fled the Nazi-controlled Continent and settled in Ireland. Schrödinger was invited by the Taoiseach of the time to give some public lectures and chose the topic of life – the biology and physics of life. Schrödinger’s lectures were then published in the little book What Is Life? (1944) which inspired generations of young people to take up science (in his memoir The Double Helix James Watson describes how the book inspired him; Addy Pross named his book about the origins of life, What Is Life?, as a direct tribute to Schrödinger’s text).

Well, 49 years later Venter was invited by the Taoiseach of the day to deliver a new set of lectures, addressing the same question as Schrödinger, but in doing so, making clear the enormous strides in physics, chemistry, biology, biochemistry and genetics which had been made in that half-century.

Twelve chapters

The twelve chapters are titled:

  1. Dublin, 1943-2012
  2. Chemical synthesis as proof
  3. Dawn of the digital age of biology
  4. Digitizing life
  5. Synthetic Phi X 174
  6. First synthetic genome
  7. Converting one species into another
  8. Synthesis of the M. mycoides genome
  9. Inside a synthetic cell
  10. Life by design
  11. Biological transportation
  12. Life at the speed of light

Each chapter contains a formidable amount of state-of-the-art biochemical knowledge. The first few chapters recap relevant forebears who helped figure out that DNA was the vehicle of heredity, beginning right back at the start with Aristotle, who made the primal division of living things into animal, vegetable or mineral, and then going on to namecheck other pioneers such as Robert Hook and, of course, Charles Darwin.

Biochemistry

But the real thrust of the book is to get up to date with contemporary achievements in sequencing genomes and creating transgenic entities i.e. organisms which have had the DNA of completely separate organisms stitched into them.

In order to do this Venter, of course, has to describe the molecular mechanisms of life in great detail. Successive chapters go way beyond the simplistic understanding of DNA described in James Watson’s book about the double helix, and open up for the reader the fantastical fairyland of how DNA actually works.

He explains the central role of the ribosomes, which are the factories where protein synthesis takes place (typical human cells contain about a thousand ribosomes), and the role of messenger RNA in cutting off snippets of DNA and taking them to the ribosome.

It is to the ribosome that transfer RNA (tRNA) brings along amino acids, which are then intricately assembled according to the sequence of bases found on the original DNA. Combinations of the twenty amino acids are assembled into the proteins which all life forms are made of – from the proteins which make up the cell membrane, to collagen which accounts for a quarter of all the proteins found in vertebrate animals, or elastin, the basis of lung and artery walls, and so on and so on.

I found all this mind-boggling, but the most striking single thing I learned is how fast it happens, and that it needs to happen so unrelentingly.

Fast

Venter explains that protein synthesis requires only seconds to make chains of a hundred amino acids or more. Nowadays we understand the mechanism whereby the ribosome is able to ratchet RNAs laden with amino acids along its production lines at a rate of fifteen per second! Proteins need to ‘fold’ up into the correct shape – there are literally millions of possible shapes they can assume but they only function if folded correctly. This happens as soon as they’ve been manufactured inside the ribosome and takes place in a few thousandths of a second. The protein villin takes six millionths of a second to fold correctly!

I had no idea that some of the proteins required for life to function (i.e. for cells to maintain themselves) exist for as little as forty-five minutes before they decay and cease to work. Their components are then disassembled and returned to the hectic soup which is contained inside each cell membrane, before being picked up by passing tRNA and taken along to the ribosome to be packaged up into another useful protein.

Relentless

It is the absolutely relentless pressure to produce thousands of different proteins, on a continuous basis, never faltering, never resting, which makes the mechanisms of life so needy of resources, and explains why animals need to be constantly taking in nutrition from the environment, relentlessly eating, drinking, breaking food down into its elementary constituents and excreting waste products.

After a while the book began to make me feel scared by the awesome knowledge of what is required to keep ‘me’ going all day long. Just the sheer effort, the vast amount of biochemical activity going on in every one of the forty or so trillion cells which make up my body, gave me a sense of vertigo.

Every day, five hundred billion blood cells die in an individual human. It is also estimated that half our cells die during normal organ development. We all shed about five hundred million skin cells every day. As a result you shed your entire outer layer of skin every two to four weeks. (p.57 – my italics)

Life is a process of dynamic renewal.

In an hour or even less a bacterial cell has to remake all of its proteins or perish. (p.62)

Venter’s achievements

Having processed through the distinguished forebears and pioneers of biochemistry, Venter comes increasingly to the work which he’s been responsible for. First of all he describes the process behind the sequencing of the first human genome – explaining how he and his team devised a vastly faster method of sequencing than their rivals (and the controversy this aroused).

Then he goes on to tell how he led teams which looked into splicing one organism’s DNA into another. And then he explains the challenge of going to the next phase, and creating life forms from the DNA up.

In fact the core of the book is a series of chapters which describe in minute and, some might say, quite tedious detail, the precise strategies and methodologies Venter and his teams took in the decade or so from 2000 to 2010 to, as he summarises it:

  • synthesise DNA at a scale twenty times faster than previously possible
  • develop a methodology to transplant a genome from one species to another
  • solve the DNA-modification problems of restriction enzymes destroying transplanted DNA

Successive chapters take you right into actual meetings where he and colleagues discussed how to tackle the whole series of technical problems they faced, and explains in exquisite detail precisely the techniques they developed at each step of the way. He even includes work emails describing key findings or turning points, and the texts he exchanged with colleagues at key moments (pp.171-2).

After reading about a hundred of pages of this my mind began to glaze over and I skipped paragraphs and then pages which describe such minutiae as how he decided which members of the Institute to put in charge of which aspects of the project and why — because I was impatient to get to the actual outcomes. And these outcomes have been dramatic:

In May 2010, a team of scientists led by Venter became the first to successfully create what was described as ‘synthetic life’. This was done by synthesizing a very long DNA molecule containing an entire bacterium genome, and introducing this into another cell … The single-celled organism contains four ‘watermarks’ written into its DNA to identify it as synthetic and to help trace its descendants. The watermarks include:

    • a code table for entire alphabet, with punctuations
    • the names of 46 contributing scientists
    • three quotations
    • the secret email address for the cell.

Venter gives a detailed description of the technical challenges, and the innovations his team devised to overcome them, in the quest to create the first ever synthesised life form in chapter 8, ‘Synthesis of the M. mycoides genome’.

More recently, after the period covered by this book (although the book describes this as one of his goals):

On March 25, 2016 Venter reported the creation of Syn 3.0, a synthetic genome having the fewest genes of any freely living organism (473 genes). Their aim was to strip away all nonessential genes, leaving only the minimal set necessary to support life. This stripped-down, fast reproducing cell is expected to be a valuable tool for researchers in the field. (Wikipedia)

The international nature of modern science

One notable aspect of the text is the amount of effort he puts into crediting other people’s work, and in particular the way these consists of teams.

When Watson wrote his book he could talk about individual contributors like Linus Pauling, Maurice Wilkins, Oswald Avery, Erwin Chergaff or Rosalind Franklin. One of the many things that has changed since Watson’s day is the way science is now done by large teams, and often collaborations not only between labs, but between labs around the world.

Thus at every step of his explanations Venter is very careful indeed to give credit to each new insight and discovery which fed into his own team’s work, and to namecheck all the relevant scientists involved. It was to be expected that each page would be studded with the names of biochemical processes and substances, but just as significant, just as indicative of the science of our times, is the way each page is also freighted with lists of names – and also, just how ethnically mixed the names are – Chinese, Indian, French, German, Spanish – names from all around the world.

Without anyone having to explain it out loud, just page after page of the names alone convey what a cosmopolitan and international concern modern science is.

A simplified timeline

Although Venter spends some time recapping the steady progress of biology and chemistry into the 20th century and up to Watson and Crick’s discovery, his book really makes clear that the elucidation of DNA was only the beginning of an explosion of research into genetics, such that genetics – and the handling of genetic information – are now at the centre of biology.

1944 Oswald Avery discovered that DNA, not protein, was the carrier of genetic information
1949 Fred Sanger determined the sequence of amino acids in the hormone insulin

1950 Erwin Chargaff made the discoveries about the four components of DNA which became known as Chargaff’s Rules, i.e. the number of guanine units equals the number of cytosine units and the number of adenine units equals the number of thymine units, strongly suggesting they came in pairs
1952 the Miller-Urey experiments show that organic molecules could be created out of a ‘primal soup’ and electricity
1953 Watson and Crick publish structure of DNA
1953 Barbara McClintock publishes evidence of transposable elements in DNA, aka transposons or jumping genes
1955 Heinz Fraenkel-Conrat and biophysicist Robley Williams showed that a functional virus could be created out of purified RNA and a protein coat.
1956 Arthur Kornberg isolated the first DNA polymerizing enzyme, now known as DNA polymerase I

1961 Marshall Nirenberg and Heinrich J. Matthaei discover that DNA is used in sets of three called ‘codons’
1964 Robert Holley elucidates the structure of transfer RNA
1960s Werner Arber and Matthew Meselson isolate first restriction enzyme
1967 DNA ligase discovered, an enzyme capable of linking DNA into a ring such as is found in viruses
1967 Carl Woese suggests that RNA not only carries genetic information but has catalytic properties

1970 Hamilton O. Smith, Thomas Kelly and Kent Wilcox isolate the first type II restriction enzyme
1970 discovery of reverse transcriptase which converts RNA into DNA
1971 start if gene-splicing revolution when Paul Berg spliced part of a bacterial virus into a monkey virus
1972 Herbert Boyer splices DNA from Staphylococcus into E. Coli
1974 first transgenic mammal created by Rudolf Jaenisch and Beatrice Mintz
1974 development of ‘reverse genetics’ where you interefere with an organism’s DNA and see what happens
1976 first biotech company, Genentech, set up
1977 Boyer, Itakura and Riggs use recombinant DNA to produce a human protein
1977 Carl Woese proposes an entire new kingdom of life, the Archaea

1980 Charles Weissmann engineers the protein interferon using recombinant-DNA technology
1981 Racaniello and Baltimore used recombinant DNA technology to generate the first infectious clone of an animal RNA virus, poliovirus
1982 genetically engineered insulin becomes commercially available
1980s discovery of the function of proteasomes which break up unneeded or damaged proteins
1980s Ada Yonath and Heinz-Günter Wittman grow crystals from bacterial chromosomes
1985 Martin Caruthers and his team developed an automated DNA synthesiser
1985 Aaron Klug develops ‘zinc fingers’, proteins which bind to specific three-letter sequences of DNA

1996 proposed life on Mars on the basis of microbial ‘fossils’ found in rocks blown form Mars to earth – later disproved
1996 publication of the yeast genome
1997 Venter’s team publish the entire genome of the Helicobacter pylori bacterium
1997 Dolly the sheep is cloned (DNA from a mature sheep’s mammary gland was injected into an egg that had had its own nucleus removed; it was named Dolly in honour of Dolly Parton and her large mammary glands)
1998 Andrew Fire and Craig Cameron Mello showed that so-called ‘junk DNA’ codes for double stranded RNA which trigger or shut down other genes
1999 Harry F. Noller publishes the first images of a complete ribosome

2005 The structure and function of the bacterial chromosome by Thanbichler, Viollier and Shapiro
2007 publication of Synthetic Genomics: Options for Government
2008 Venter and team create a synthetic chromosome of a bacterium
2010 Venter’s team announce the creation of the first synthetic cell (described in detail in chapter 8)
2011 first structure of a eukaryotic ribosome published

Life at the speed of light

Anyway, this is a book with a thesis and a purpose. Or maybe two purposes, two sides of the same coin. One is to eradicate all irrational, magical beliefs in ‘vitalism’, to insist that life is nothing but chemistry. The other is for Venter to proclaim his bold visions of the future.

1. Anti-vitalism

The opening chapter had included a brief recap of the literature and fantasy of creating new life, Frankenstein etc. This turns out to be because Venter is a fierce critic of all traditions and moralists who believe in a unique life force. He is at pains to define and then refute the theory of vitalism – ‘the theory that the origin and phenomena of life are dependent on a force or principle distinct from purely chemical or physical forces.’ Venter very powerfully believes the opposite: that ‘life’ consists of information about chemistry, and nothing more.

This, I think, is a buried motive for describing the experiments carried out at his own institute in such mind-numbing detail. It is to drill home the reality that life is nothing more than chemistry and information. If you insert the genome of one species into the cells of another they become the new species. They obey the genomic or chemical instructions. All life does. There is no mystery, no vital spark, no élan vital etc etc.

A digression on the origins of life

This is reinforced in chapter 9 where Venter gives a summary of the work of Jack W. Szostak into the origin of life.

Briefly, Szostak starts with the fact that lipid or fat molecules are spontaneously produced in nature. He shows that these tend to link up together to form ‘vesicles’ which also, quite naturally, form together into water-containing membranes. If RNA – which has been shown to also assemble spontaneously – gets into these primitive ‘cells’, then they start working, quite automatically, to attract other RNA molecules into the cell. As a result the cell will swell and, with a little shaking from wind or tide, replicate. Voilà! You have replicating cells containing RNA.

Venter then describes work that has been done into the origin of multicellularity i.e. cells clumping together to co-operate, which appears to have happened numerous times in the history of life, to give rise to a variety of multicellular lineages.

Venter goes on to describe one other major event in the history of life – symbiogenesis – ‘The theory holds that mitochondria, plastids such as chloroplasts, and possibly other organelles of eukaryotic cells represent formerly free-living prokaryotes taken one inside the other in endosymbiosis.’

In other words, at a number of seismic moments in the history of life, early eukaryotic cells engulfed microbial species that were living in symbiosis with them. Or to put it another way, early cells incorporated useful microbes which existed in their proximity, entirely into themselves.

The two big examples are:

  • some two billion years ago, when a eukaryotic cell incorporated into itself a photosynthetic bacterial algae cell which ultimately became the ‘chloroplast‘ – the site where photosynthesis takes place – in all successive plant species
  • and the fact that the ‘power packs’ of human cells, known as mitochondria, carry their own genetic code and have their own way of reproducing, indicating that they were taken over whole, not melded or merged but swallowed (it is now believed that human mitochondria derived from a specific bacterium, Rickettsia, which survives down to this day)

This information is fascinating in itself, but it is clearly included to join up with the detailed description of the work in his own institute in order to make the overwhelming case that life is just information and that DNA is the bearer of that information.

It obviously really irritates Venter that, despite the overwhelming weight of the evidence, people at large – journalists, philosophers, armchair moralists and religious believers – refuse to accept it, refuse to face the facts, and still believe there is something special about life, that humans, in particular, have a soul or spirit or other voodoo codswallop.

2. Creating life

The corollary of Venter’s insistence that there being nothing magical about ‘life’, is the confident way he interprets all the evidence he has so painstakingly described, and all the dazzling achievements he has been involved in, as having brought humanity to the brink of a New Age of Life, a New Epoch in the Evolution of Life on Earth.

We have now entered what I call ‘the digital age of biology’, in which once distinct domains of computer codes and those that program life are beginning to merge, where new synergies are emerging that will drive evolution in radical directions. (p.2)

The fusion of the digital world of the machine and that of biology would open up the remarkable possibilities for creating novel species and guiding future evolution. (p.109)

In the final chapters of this book Venter waxes very lyrical about the fantastic opportunities opening up for designing DNA on computers, modeling the behaviour of this artificial DNA, fine-tuning the design, and then building new synthetic organisms in the real world.

The practical applications know no limits, and on page 221 he lists some:

  • man-made organisms which could absorb the global warming CO2 in the air, or eat oil pollution, turning it into harmless chemicals
  • computer designing cures for diseases
  • designing crops that are resistant to drought, that can tolerate disease or thrive in barren environments, provide rich new sources of protein and other nutrients, can be harnessed for water purification in arid regions
  • designing animals that become sources for pharmaceuticals or spare body parts
  • customising human stem cells to regenerate damaged organs and bodies

Biological transformations

The final two chapters move beyond even these sci-fi goals to lay out some quite mind-boggling visions of the future. Venter builds on his institute’s achievements to date, and speculates about the kinds of technologies we can look forward to or which are emerging even as he writes.

The one that stuck in my mind is the scenario that, when the next variety of human influenza breaks out, doctors will only have to get a sample of the virus to a lab like Venter’s and a) they will now be able to work out its DNA sequence more or less the same day b) they will then be able to design a vaccine in a computer c) they will be able to create the DNA they have designed in the lab much faster than ever possible before but d) they will be able to email the design for this vaccine DNA anywhere in the world, at the speed of a telephone wire, at the speed of light.

That is what the title of the book means. New designs for synthesised life forms can now be developed in computers (which are working faster and faster) and then emailed wherever they’re required i.e. to the centre of the outbreak of a new disease, where labs will be able to use the techniques pioneered by Venter’s teams to culture and mass produce vaccines at record speeds.


Scientific myopia

I hate to rain on his parade, but I might as well lay out as clearly as I can the reasons why I am not as excited about the future as Venter. Why I am more a J.G. Ballard and John Gray man than a Venter man.

1. Most people don’t know or care Venter takes the position of many of the scientists I’ve been reading – from the mathematicians Alex Bellos and Ian Stewart through to the astrophysicists Stephen Hawking and Paul Davies and Paul Barrow, to the origin-of-life men Cairns-Smith and Addy Pross – that new discoveries in their fields are earth-shatteringly important and will make ordinary people stop in their tracks, and look at their neighbour on the bus or train and exclaim, ‘NOW I understand it! NOW I know the meaning of life! NOW I realise what it’s all about.’

A moment’s reflection tells you that this simply won’t happen. Einstein’s relativity, Schrödinger and Bohr’s quantum mechanics, the structure of DNA, cloning, the discovery of black holes – what is striking is how little impact most of these ‘seismic’ discoveries have had on most people’s lives or thinking.

Ask your friends and family which of the epic scientific discoveries of the 20th century I’ve listed above has made the most impact on their lives. Or they’ve even heard of. Or could explain.

2. Most people are not intellectuals This error (the notion that ordinary people are excited about scientific ‘breakthroughs’) is based on a deeper false premise, one of the great category errors common to all these kind of books and magazine articles and documentaries – which is that the authors think that everyone else in society is a university-educated intellectual like themselves, whereas, very obviously, they are not. Trump. Brexit. Most people in western democracies are not university-educated intellectuals.

3. Public debate is often meaningless Worse, university-educated intellectuals have a bad habit of believing that something called ‘education’ and ‘public debate’ will control the threat posed by these new technologies:

Opportunities for public debate and discussion on this topic must be sponsored, and the lay public must engage with the relevant issues. (p.215)

Famous last words. Look at the ‘debate’ surrounding Brexit. Have any of the thousands of articles, documentaries, speeches, books and tweets helped solve the situation? No.

‘Debate’ hardly ever solves anything. Clear-cut and affordable solutions which people can understand and get behind solve things.

4. A lot of people are nasty, some are evil Not only this but Venter, like all the other highly-educated, middle-class, liberal intellectuals I’ve mentioned, thinks that people are fundamentally nice – will welcome their discoveries, will only use them for the good of mankind, and so on.

Megalolz, as my kids would say. No. People are not nice. The Russians and the Chinese are using the internet to target other countries’ vital infrastructures, and sow misinformation. Islamist warriors are continually looking for ways to attack ‘the West’, the more spectacular, the more deaths, the better. In 2010 Israel is alleged to have carried out the first cyberattack on another nation’s infrastructure when it (allegedly) attacked a uranium enrichment facility at Iran’s Natanz underground nuclear site.

In other words, cyberspace is not at all a realm where high-minded intellectuals meet and debate worthy moral issues, and where synthetic biologists devise life-saving new vaccines and beam them to locations of epidemic outbreaks ‘at the speed of light’. Cyberspace is already a war zone.

And it is a warzone in a world which contains some nasty regimes, not just those which are in effect dictatorships (Iran, China) but even many of the so-called democracies.

Trump. Putin. Erdogan. Bolsonaro. Viktor Orban. These are all right-wing demagogues who were voted into power in democratic elections.

It seems to me that both the peoples, and the leaders, who Venter puts his faith in are simply not up to the job of understanding, using wisely or safeguarding, the speed of light technology he is describing.

Venter goes out of his way, throughout the book, to emphasise how socially responsible he and his Institute and his research have been, how they have taken part in, sponsored and contributed to umpteen conferences and seminars, alongside government agencies like the FBI and Department of Homeland Security, into the ‘ethics’ of conducting synthetic biology (i.e. designing and building new organisms) and into its risks (terrorists use it to create lethal biological weapons).

Indeed, most of chapter ten is devoted to the range of risks – basically, terrorist use or some kind of accident – which could lead to the release of harmful, synthesised organisms into the environment – accompanied by a lot of high-minded rhetoric about the need to ‘educate the public’ and ‘engage a lay audience’ and ‘exchange views’, and so on…

I believe that the issue of the responsible use of science is fundamental… (p.215)

Quite. But then the thousands of scientists and technicians who invented the atom bomb were highly educated, highly moral and highly responsible people, too. But it wasn’t them who funded it, deployed it and pushed the red button. Good intentions are not enough.


Related links

Reviews of other science books

Chemistry

Cosmology

The Environment

Genetics and life

Human evolution

Maths

Particle physics

Psychology

What Is Life? How Chemistry Becomes Biology by Addy Pross (2012)

I will attempt to show that the chasm separating biology and chemistry is bridgeable, that Darwinian theory can be integrated into a more general chemical theory of matter, and that biology is just chemistry, or to be more precise, a sub-branch of chemistry – replicative chemistry. (p.122)

Repetitive and prolix

This book is 190 pages long. It is much harder to read than it need be because Pross is a bad writer with very bad habits, namely 1. irritating repetition and 2. harking back and forward. The initial point which he repeats again and again in the first 120 pages is that nobody knows the secret of the origins of life and all previous attempts to solve it have been dead ends.

So, what can we conclude regarding the emergence of life on our planet? The short answer: almost nothing. (p.109)

We don’t know how to go about making life because we don’t really know what life is, and we don’t know what life is, because we don’t understand the principles that led to its emergence. (p.111)

The efforts to uncover probiotic-type chemistry, while of considerable interest in their own right, were never likely to lead us to the ultimate goal – understanding how life on earth emerged. (p.99)

Well, at the time of writing, the so-called Holy Grail (the Human Genome sequence) and the language of life that it was supposed to have taught us have not delivered the promised goods. (p.114)

But the systems biology approach has not proved a nirvana… (p.116)

Non-equilibrium thermodynamics has not proved to be the hoped-for breakthrough in seeking greater understanding of biological complexity. (p.119)

A physically based theory of life continues to elude us. (p.119)

While Conway’s Life game has opened up interesting insights into complex systems in general, direct insights into the nature of living systems do not appear to have been forthcoming. (p.120)

The book is so repetitive I though the author and his editor must have Alzheimer’s Disease. On page viii we are told that the physicist Erwin Schrödinger wrote a pithy little book titled What Is Life? which concluded that present-day physics and chemistry can’t explain the phenomenon of life. Then, on page xii, we’re told that the physicist Erwin Schrödinger’ found the issue highly troublesome’. Then on page 3 that the issue ‘certainly troubled the great physicists of the century, amongst them Bohr, Schrödinger and Wigner’. Then on page 36, we learn that:

Erwin Schrödinger, the father of quantum mechanics, whose provocative little book What Is Life? we mentioned earlier, was particularly puzzled by life’s strange thermodynamic behaviour.

When it comes to Darwin we are told on page 8 that:

Darwin himself explicitly avoided the origin of life question, recognising that within the existing state of knowledge the question was premature.

and then, in case we have senile dementia or the memory of a goldfish, on page 35 he tells us that:

Darwin deliberately side-stepped the challenge, recognising that it could not be adequately addressed within the existing state of knowledge.

As to the harking back and forth, Pross is one of those writers who is continually telling you he’s going to tell you something, and then continually reminding you that he told you something back in chapter 2 or chapter 4 – but nowhere in the reading process do you actually get clearly stated the damn thing he claims to be telling.

As we mentioned in chapter 4…

As noted above…

I will say more on this point subsequently…

We will consider a possible resolution of this sticky problem in chapter 7…

As discussed in chapter 5… as we will shortly see… As we have already pointed out… As we have discussed in some detail in chapter 5…  described in detail in chapter 4…

In this chapter I will describe… In this chapter I will attempt…

I will defer this aspect of the discussion until chapter 8…

Jam yesterday, jam tomorrow, but never jam today.

Shallow philosophy

It is a philosophy book written by a chemist. As such it comes over as extremely shallow and amateurish. Pross namechecks Wittgenstein, and (pointlessly) tells us that ‘tractatus’ is Latin for ‘treatise’ (p.48) – but fails to understand or engage with Wittgenstein’s thought.

My heart sank when I came to chapter 3, titled Understanding ‘understanding’ which boils down to a superficial consideration of the difference between a ‘reductionist’ and a ‘holistic’ approach to science, the general idea that science is based on reductionism i.e. reducing systems to their smallest parts and understanding their functioning before slowly building up in scale, whereas ‘holistic’ approach tries to look at the entire system in the round. Pross gives a brief superficial overview of the two approaches before concluding that neither one gets us any closer to an answer.

Instead of interesting examples from chemistry, shallow examples from ‘philosophy’

Even more irritating than the repetition is the nature of the examples. I thought this would be a book about chemistry but it isn’t. Pross thinks he is writing a philosophical examination of the meaning of life, and so the book is stuffed with the kind of fake everyday examples which philosophers use and which are a) deeply patronising b) deeply uninformative.

Thus on page x of the introduction Pross says imagine you’re walking through a field and you come across a refrigerator. He then gives two pages explaining how a refrigerator works and saying that you, coming across a fully functional refrigerator in the middle of a field, is about as probable as the purposeful and complex forms of life can have come about by accident.

Then he writes, Imagine that you get into a motor car. We only dare drive around among ‘an endless stream of vehicular metal’ on the assumption that the other drivers have purpose and intention and will stick to the laws of the highway code.

On page 20 he introduces us to the idea of a ‘clock’ and explains how a clock is an intricate mechanism made of numerous beautifully engineered parts but it will eventually break down. But a living organism on the other hand, can repair itself.

Then he says imagine you’re walking down the street and you bump into an old friend named Bill. He looks like Bill, he talks like Bill and yet – did you know that virtually every cell in Bill’s body has renewed itself since last time you saw him, because life forms have this wonderful ability to repair and renew themselves!

Later, he explains how a Boeing 747 didn’t come into existence spontaneously, but was developed from earlier plane designs, all ultimately stemming from the Wright brothers’ first lighter than air flying machine.

You see how all these examples are a) trite b) patronising c) don’t tell you anything at all about the chemistry of life.

He tells us that if you drop a rock out the window, it falls to the ground. And yet a bird can hover in the air merely by flapping its wings! For some reason it is able to resist the Second law of Thermodynamics! How? Why? Nobody knows!

Deliberately superficial

And when he does get around to explaining anything, Pross himself admits that he is doing it in a trivial, hurried, quick, sketchy way and leaving out most of the details.

I will spare the reader a detailed discussion…

These ideas were discussed with some enthusiasm some 20-30 years ago and without going into further detail…

If that sounds too mathematical, let’s explain the difference by recounting the classical legend of the Chinese emperor who was saved in battle by a peasant farmer. (p.64)

Only in the latter pages – only when he gets to propound his own theory from about page 130 – do you realise that he is not so much making a logical point as trying to get you to see the problem from an entirely new perspective. A little like seeing the world from the Marxist or the Freudian point of view, Pross believes himself to be in possession of an utterly new way of thinking which realigns all previous study and research and thinking on the subject. It is so far-ranging and wide-sweeping that it cannot be told consecutively.

And it’s this which explains the irritating sense of repetition and circling and his constant harking forward to things he’s going to tell you, and then harking back to things he claims to have explained a few chapters earlier. The first 130 pages are like being lost in a maze.

The problem of the origin of life

People have been wondering about the special quality of live things as opposed to dead things for as long as there have been people. Darwin discovered the basis of all modern thinking about life forms, which is the theory of evolution by natural selection. But he shied away from speculating on how life first came about.

Pross – in a typically roundabout manner – lists the ‘problems’ facing anyone trying to answer the question, What is life and how did it begin?

  • life breaks the second law of thermodynamics i.e. appears to create order out of chaos, as opposed to the Law which says everything tends in the opposite direction i.e. tends towards entropy
  • life can be partly defined by its sends of purpose: quite clearly inanimate objects do not have this
  • life is complex
  • life is organised

Put another way, why is biology so different from chemistry? How are the inert reactions of chemistry different from the purposive reactions of life? He sums this up in a diagram which appears several times:

He divides the move from non-life into complex life into two phases. The chemical phase covers the move from non-life to simple life, the biological phase covers the move from simple life to complex life. Now, we know that the biological phase is covered by the iron rules of Darwinian evolution – but what triggered, and how can we account for, the move from non-life to simple life? Hence a big ?

Pross’s solution

Then, on page 127, Pross finally introduces his Big Idea and spends the final fifty or so pages of the book showing how his theory addresses all the problem in existing ‘origin of life’ literature.

His idea begins with the established knowledge that all chemical reactions seek out the most ‘stable’ format.

He introduces us to the notion that chemists actually have several working definitions of ‘stability’, and then introduces us to a new one: the notion of dynamic kinetic stability, or DKS.

He describes experiments by Sol Spiegelman in the 1980s into RNA. This showed how the RNA molecule replicated itself outside of a living cell. That was the most important conclusion of the experiment. But they also found that the RNA molecules replicated but also span off mutations, generally small strands of of RNA, some of which metabolised the nutrients far quicker than earlier varieties. These grew at an exponential rate to swiftly fill the petri dishes and push the longer, ‘correct’ RNA to extinction.

For Pross what Spiegelman’s experiments showed was that inorganic dead chemicals can a) replicate b) replicate at exponential speed until they have established a situation of dynamic kinetic stability. He then goes on to equate his concept of dynamic kinetic stability with the Darwinian one of ‘fitness’. Famously, it is the ‘fit’ which triumph in the never-ending battle for existence. Well, Pross says this concept can be rethought of as, the population which achieves greatest dynamic kinetic stability – which replicates fast enough and widely enough – will survive, will be the fittest.

fitness = dynamic kinetic stability (p.141)

Thus Darwin’s ideas about the eternal struggle for existence and the survival of the fittest can be extended into non-organic chemistry, but in a particular and special way:

Just as in the ‘regular’ chemical world the drive of all physical and chemical systems is toward the most stable state, in the replicative world the drive is also toward the most stable state, but of the kind of stability applicable within that replicative world, DKS. (p.155)

Another way of looking at all this is via the Second Law. The Second Law of Thermodynamics has universally been interpreted as militating against life. Life is an affront to the Law, which says that all energy dissipates and seeks out the state of maximum diffusion. Entropy always triumphs. But not in life. How? Why?

But Pross says that, if molecules like his are capable of mutating and evolving – as the Sol Spiegelman experiments suggest – then they only appear to contradict the Second Law. In actual fact they are functioning in what Pross now declares is an entirely different realm of chemistry (and physics). The RNA replicating molecules are functioning in the realm of replicative chemistry. They are still inorganic, ‘dead’ molecules – but they replicate quickly, mutate to find the most efficient variants, and reproduce quickly towards a state of dynamic kinetic stability.

So what he’s trying to do is show how it is possible for long complex molecules which are utterly ‘dead’, nonetheless to behave in a manner which begins to see them displaying qualities more associated with the realm of biology:

  • ‘reproduction’ with errors
  • triumph of the fittest
  • apparent ‘purpose’
  • the ability to become more complex

None of this is caused by any magical ‘life force’ or divine intervention (the two bogeymen of life scientists), but purely as a result of the blind materialistic forces driving them to take most advantage of their environment i.e. use up all its nutrients.

Pross now takes us back to that two-step diagram of how life came about, shown above – Non-Life to Simple Life, Simple Life to Complex Life, labelled the Chemical Phase and the Biological Phase, respectively.

He recaps how the second phase – how simple life evolves greater complexity – can be explained using Darwin’s theory of evolution by natural selection: even the most primitive life forms will replicate until they reach the limits of the available food sources, at which point any mutation leading to even a fractional differentiation in the efficiency of processing food will give the more advanced variants an advantage. The rest is the three billion year history of life on earth.

It is phase one – the step from non-life to life – which Pross has (repeatedly) explained has given many of the cleverest biologists, physicists and chemists of the 20th century sleepless nights, and which – in chapters 3 and 4 – he runs through the various theories or approaches which have failed to deliver an answer to.

Well, Pross’s bombshell solution is simple. There are not two steps – there was only ever one step. The Darwinian mechanism by which the best adapted entity wins out in a given situation applies to inert chemicals as much as to life forms.

Let me now drop the bombshell… The so-called two-stage process is not two-stage at all. It is really just once, continuous process. (p.127) … what is termed natural selection within the biological world is also found to operate in the chemical world… (p.128)

Pross recaps the findings of that Spiegelman experiment, which was that the RNA molecules eventually made errors in their replication, and some of the erroneous molecules were more efficient at using up the nutrition in the test tube. After just a day, Spiegelman found the long RNA molecules – which took a long time to replicate – were being replaced by much shorter molecules which replicated much quicker.

There, in a nutshell, is Pross’s theory in action. Darwinian competition, previously thought to be restricted only to living organisms, can be shown to apply to inorganic molecules as well – because inorganic molecules themselves show replicating, ‘competitive’ behaviour.

For Pross this insight was confirmed in experiments conducted by Gerald Joyce in 2009, who showed that a variety of types of RNA, placed in a nutrient, replicated in such a way as to establish a kind of dynamic equilibrium, where each molecule established a chemical niche and thrived on some of the nutrients, while other RNA varieties evolved to thrive on other types. To summarise:

The processes of abiogenesis and evolution are actually one physicochemical process governed by one single mechanism, rather than two discrete processes governed by two different mechanisms. (p.136)

Or:

The study of simple replicating systems has revealed an extraordinary connection – that Darwinian theory, that quintessential biological principle, can be incorporated into a more general chemical theory of evolution, one that encompasses both living and non-living systems. it is that integration that forms the basis of the theory of life I propose. (p.162)

The remaining 50 or so pages work through the implications of this idea or perspective. For example he redefines the Darwinian notion of ‘fitness’ to be ‘dynamic kinetic stability’. In other words, the biological concept of ‘fitness’ turns out, in his theory, to be merely the biological expression of a ‘more general and fundamental chemical concept’ (p.141).

He works through a number of what are traditionally taken to be life’s attributes and reinterprets in the new terms he’s introduced, in terms of dynamic kinetic stability, replicative chemistry and so on. Thus he addresses life’s complexity, life’s instability, life’s dynamic nature, life’s diversity, life’s homochirality, life’s teleonomic character, the nature of consciousness, and speculating about what alien life would look like before summing up his theory. Again.

A solution to the primary question exists and is breathtakingly simple: life on earth emerged through the enormous kinetic power of the replication reaction acting on unidentified, but simple replicating systems, apparently composed of chain-like oligomeric substances, RNA or RNA-like, capable of mutation and complexification. That process of complexification took place because it resulted in the enhancement of their stability – not their thermodynamic stability, but rather the relevant stability in the world of replicating systems, their DKS. (p.183)

A thought about the second law

Pross has explained that the Second Law of Thermodynamics apparently militates against the spontaneous generation of life, in any form, because life is organised and the second law says everything tends towards chaos. But he comes up with an ingenious solution. If one of these hypothetical early replicating molecules acquired the ability to generate energy from light – it would effectively bypass the second law. It would acquire energy from outside the ‘system’ in which it is supposedly confined and in which entropy prevails.

The existence of an energy-gathering capacity within a replicating entity effectively ‘frees’ that entity from the constraints of the Second Law in much the same way that a car engine ‘free’s a car from gravitational constrains. (p.157)

This insight shed light on an old problem, and on a fragment of the overall issue – but it isn’t enough by itself to justify his theory.

Thoughts

Several times I nearly threw away the book in my frustration before finally arriving at the Eureka moment about page 130. From there onwards it does become a lot better. As you read Pross you have the sense of a whole new perspective opening up on this notorious issue.

However, as with all these theories, you can’t help thinking that if his theory had been at all accepted by the scientific community – then you’d have heard about it by now.

If his theory really does finally solve the Great Mystery of Life which all the greatest minds of humanity have laboured over for millennia… surely it would be a bit better known, or widely accepted by his peers?

The theory relies heavily on results from Sol Spiegelman’s experiments with RNA in the 1980s. Mightn’t Spiegelman himself, or other tens of thousands of other biologists, have noticed its implications in the thirty odd years between the experiments and Pross’s book?

And if Pross has solved the problem of the origin of life, how come so many other, presumably well-informed and highly educated scientists, are still researching the ‘problem’?

(By the way, the Harvard website optimistically declares that:

Thanks to advances in technologies in these areas, answers to some of the compelling questions surrounding the origins of life in the universe were now possibly within reach… Today a larger team of researchers have joined this exciting biochemical ‘journey through the Universe’ to unravel one of humankind’s most compelling mysteries – the origins of life in the Universe.

Possibly within reach’, lol. Good times are always just around the corner in the origins-of-life industry.)

So I admit to being interested by pages 130 onwards of his book, gripped by the urgency with which he tells his story, gripped by the vehemence of his presentation, in the same way you’d be gripped by a thriller while you read it. But then you put it down and forget about it, going back to your everyday life. Same here.

It’s hard because it is difficult to keep in mind Pross’s slender chain of argumentation. It rests on the two-stage diagram – on Pross’s own interpretation of the Spiegelman experiments – on his special idea of dynamic kinetic stability – and on the idea of replicative chemistry.

All of these require looking at the problem through is lens, from his perspective – for example agreeing with the idea that the complex problem of the origin of life can be boiled down to that two-stage diagram; this is done so that we can then watch him pull the rabbit out of the hat by saying it needn’t be in two stages after all! So he’s address the problem of the diagram. But it is, after all, just one simplistic diagram.

Same with his redefining Darwin’s notion of ‘fitness’ as being identical to his notion of dynamic kinetic stability. Well, if he says so. but in science you have to get other scientists to agree with you, preferably by offering tangible proof.

These are more like tricks of perspective than a substantial new theory. And this comes back to his rhetorical strategy of repetition, to the harping on the same ideas.

The book argues its case less with evidence (there is, in the end, very little scientific ‘evidence’ for his theory – precisely two experiments, as far as I can see), but more by presenting a raft of ideas in their current accepted form (for 130 boring pages), and then trying to persuade you to see them all anew, through his eyes, from his perspective (in the final 50 pages). As he summarises it (yet again) on page 162:

The emergence of life was initiated by the emergence of a single replicating system, because that seemingly inconsequentual event opened the door to a distinctly different kind of chemistry – replicative chemistry. Entering the world of replicative chemistry reveals the existence of that other kind of stability in nature, the dynamic kinetic stability of things that are good at making more of themselves.Exploring the world of replicative chemistry helps explain why a simple primordial replicating system would have been expected to complexify over time. The reason: to increase its stability – its dynamic kinetic stability (DKS).

Note the phrase’ entering the world of replicative chemistry…’ – It sounds a little like ‘entering the world of Narnia’. It is almost as if he’s describing a religious conversion. All the facts remain the same, but new acolytes now see them in a totally different light.

Life then is just the chemical consequences that derive from the power of exponential growth operating on certain replicating chemical systems. (p.164)

(I am quoting Pross at length because I don’t want to sell his ideas short; I want to convey them as accurately as possible, and in his own words.)

Or, as he puts it again a few pages later (you see how his argument proceeds by, or certainly involves a lot of, repetition):

Life then is just a highly intricate network of chemical reactions that has maintained its autocatalytic capability, and, as already noted, that complex network emerged one step at a time starting from simpler netowrks. And the driving force? As discussed in earlier chapter, it is the drive toward greater DKS, itself based on the kinetic power of replication, which allows replicating chemical systems to develop into ever-increasing complex and stable forms. (p.185)

It’s all reasonably persuasive when you’re reading the last third of his book – but oddly forgettable once you put it down.

Fascinating facts and tasty terminology

Along the way, the reader picks up a number of interesting ideas.

  • Panspermia – the theory that life exists throughout the universe and can be carried on meteors, comets etc, and one of these landed and seeded life on earth
  • every adult human is made up of some ten thousand billion cells; but we harbour in our guts and all over the surface of our bodies ten times as many – one hundred thousand bacteria. In an adult body hundreds of billions of new cells are created daily in order to replace the ones that die on a daily basis
  • in 2017 it was estimated there may be as many as two billion species of bacteria on earth
  • the Principle of Divergence – many different species are generated from a few sources
  • teleonomy – the quality of apparent purposefulness and goal-directedness of structures and functions in living organisms
  • chiral – an adjective meaning a molecule’s mirror image is not superimposable upon the molecule itself: in fact molecules often come in mirror-image formations, known as left and right-handed
  • racemic – a racemic mixture, or racemate, is one that has equal amounts of left- and right-handed enantiomers of a chiral molecule.
  • reductionist – analysing and describing a complex phenomenon in terms of its simple or fundamental constituents
  • holistic – the belief that the parts of something are intimately interconnected and explicable only by reference to the whole
  • Second Law of Thermodynamics – ‘in all energy exchanges, if no energy enters or leaves the system, the potential energy of the state will always be less than that of the initial state.’ This is also commonly referred to as entropy
  • the thermodynamic consideration – chemical reactions will only take place if the reaction products are of lower free energy than the reactants
  • catalyst – a substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change
  • catalytic – requires an external catalyst to spark a chemical reaction
  • auocatalytic – a reaction which catalyses itself
  • cross-catalysis – two chemicals trigger reactions in each other
  • static stability – water, left to itself, is a stable chemical compound
  • dynamic stability – a river is always a river even though it is continually changing
  • prebiotic earth – earth before life
  • abiogenesis – the process whereby life was derived from non-living chemicals
  • systems chemistry – the chemical reactions of replicating molecules and the networks they create
  • the competitive exclusion principle – complete competitors cannot co-exist, or, Ecological differentiation is th enecessary condition for co-existence

Does anyone care?

Pross thinks the fact that biologists and biochemists can’t account for the difference between complex but inanimate molecules, and the simplest actual forms of life – bacteria – is a Very Important Problem. He thinks that:

Until the deep conceptual chasm that continues to separate living and non-living is bridged, until the two sciences – physics and biology – can merge naturally, the nature of life, and hence man’s place in the universe, will continue to remain gnawingly uncertain. (p.42)

‘Gnawingly’. Do you feel the uncertainty about whetherbiology and physics can be naturally merged is gnawing away at you? Or, as he puts it in his opening sentences:

The subject of this book addresses basic questions that have transfixed and tormented humankind for millennia, ever since we sought to better understand our place in the universe – the nature of living things and their relationship to the non-living. The importance of finding a definitive answer to these questions cannot be overstated – it would reveal to us not just who and what we are, but would impact on our understanding of the universe as a whole. (p.viii)

I immediately disagreed. ‘The importance of finding a definitive answer to these questions cannot be overstated’? Yes it can. Maybe, just maybe – it is not very important at all.

What do we mean by ‘important’, anyway? Is it important to you, reading this review, to realise that the division between the initial, chemical phase of the origin of life and the secondary, biological phase, is in fact a delusion, and that both processes can be accounted for by applying Darwinian selection to supposedly inorganic chemicals?

If you tried to tell your friends and family 1. how easy would you find it to explain? 2. would you seriously expect anyone to care?

Isn’t it, in fact, more likely that the laws or rules or theories about how life arose from inanimate matter are likely to be so technical, so specialised and so hedged around with qualifications, that only highly trained experts can really understand them?

Maybe Pross has squared the circle and produced a feasible explanation of the origins of life on earth. Maybe this book really is – The Answer! But in which case – why hasn’t everything changed, why hasn’t the whole human race breathed a collective sigh of relief and said, NOW we understand how it all started, NOW we know what it all means, NOW I understand who I am and my place in the universe?

When I explained Pross’s theory, in some detail, to my long-suffering wife (who did a life sciences degree) she replied that, quite obviously chemistry and biology are related; anyone who’s studied biology knows it is based on chemistry. She hardly found it ‘an extraordinary connection’. When I raised it with my son, who is studying biology at university, he’d never heard of Pross or his theory.

So one’s final conclusion is that our understanding of ‘The nature of life, and hence man’s place in the universe’ has remained remarkably unchanged by this little book and will, in all likelihood, remain so.


Related links

Reviews of other science books

Chemistry

Cosmology

The Environment

Genetics and life

Human evolution

Maths

Particle physics

Psychology

Seven Clues to the Origin of Life by A.G. Cairns-Smith (1985)

The topic of the origin of life on the Earth is a branch of mineralogy. (p.99)

How did life begin? To be more precise, how did the inorganic chemicals formed in the early years of planet earth, on the molten rocks or in the salty sea or in the methane atmosphere, transform into ‘life’ – complex organisms which extract food from the environment and replicate, and from which all life forms today are ultimately descended? What, when and how was that first momentous step taken?

Thousands of biologists have devoted their careers to trying to answer this question, with the result that there are lots of speculative theories.

Alexander Graham Cairns-Smith (1931-2016) was an organic chemist and molecular biologist at the University of Glasgow, and this 120-page book was his attempt to answer the Big Question.

In a nutshell he suggested that life derived from self-replicating clay crystals. To use Wikipedia’s summary:

Clay minerals form naturally from silicates in solution. Clay crystals, like other crystals, preserve their external formal arrangement as they grow, snap, and grow further.

Clay crystal masses of a particular external form may happen to affect their environment in ways that affect their chances of further replication. For example, a ‘stickier’ clay crystal is more likely to silt up a stream bed, creating an environment conducive to further sedimentation.

It is conceivable that such effects could extend to the creation of flat areas likely to be exposed to air, dry, and turn to wind-borne dust, which could fall randomly in other streams.

Thus – by simple, inorganic, physical processes – a selection environment might exist for the reproduction of clay crystals of the ‘stickier’ shape.

Cairns-Smith’s book is densely argued, each chapter like a lecture or seminar packed with suggestive evidence about what we know about current life forms, a summary of the principles underlying Darwin’s theory of evolution, and about how we can slowly move backwards along the tree of life, speculating about how it developed.

But, as you can see from the summary above, in the end, it is just another educated guess.

Detective story

The blurb on the back and the introduction both claim the book is written in the style of a detective story. Oh no it isn’t. It is written in the style of a biology book – more precisely, a biology book which is looking at the underlying principles of life, the kind of abstract engineering principles underlying life – and all of these take quite some explaining, drawing in examples from molecular biology where required.

Sometimes (as in chapter 4 where he explains in detail how DNA and RNA and amino acids and proteins interact within a living cell) it becomes quite a demanding biology book.

What the author and publisher presumably mean is that, in attempt to sweeten the pill of a whole load of stuff about DNA and ribosomes, Cairns-Smith starts every chapter with a quote from a Sherlock Holmes story and from time to time claims to be pursuing his goal with Holmesian deduction.

You see Holmes, far from going for the easy bits first, would positively seek out those features in a case that were seemingly incomprehensible – ‘singular’ features he would call them… I think that the origin of life is a Holmesian problem. (p.ix)

Towards the very end, he remembers this metaphor and talks about ‘tracking down the suspect’ and ‘making an arrest’ (i.e. of the first gene machine, the origin of life). But this light dusting of Holmesiana doesn’t do much to conceal the sometimes quite demanding science, and the relentlessly pedagogical tone of the book.

Broad outline

1. Panspermia

First off, Cairns-Smith dismisses some of the other theories about the origin of life. He makes short work of the theories of Fred Hoyle and Francis Crick that organic life might have arrived on earth from outer space, carried in dust clouds or on meteors etc (Crick’s version of this was named ‘Panspermia’) . I agree with Cairns-Smith that all variations on this hypothesis just relocate the problem somewhere else, but don’t solve it.

Cairns-Smith states the problem in three really fundamental facts:

  1. There is life on earth
  2. All known living things are at root the same (using the same carbon-based energy-gathering and DAN-replicating biochemistry)
  3. All known living things are very complicated

2. The theory of chemical evolution

In his day (the 1970s and 80s) the theory of ‘chemical evolution’ was widely thought to address the origin of life problem. This stated that lot of the basic amino acids and sugars which we find in organisms are relatively simple and so might well have been created by accident in the great sloshing oceans and lakes of pre-life earth, and that they then – somehow – came together to make more complex molecules which – somehow – learned how to replicate.

But it’s precisely on the vagueness of that ‘somehow’ that Cairns-Smith jumps. The leap from a random soup of semi-amino acids washing round in a lake and the immensely detailed and complex machinery of life demonstrated by even a tiny living organism – he selects the bacterium Escherichia coli – is just too vast a cliff face to have been climbed at random, by accident. It’s like saying if you left a bunch of wires and bits of metal sloshing around in a lake long enough they would eventually make a MacBook Air.

Cairns-Smith zeroes in on four keys aspects of life on earth which help to disprove the ‘chemical evolution’ theory.

  1. Life forms are complex systems. It is the whole machine which makes sense of its components.
  2. The systems are highly interlocked: catalysts are needed to make proteins, but proteins are needed to make catalysts; nucleic acids are needed to make proteins, yet proteins are needed to make nucleic acids;
  3. Life forms are very complex.
  4. The system is governed by rules and conventions: the exact choice of the amino acid alphabet and the set of assignments of amino acid letters to nucleic acid words are examples.

3. The Miller-Urey experiments

Cairns-Smith then critiques the theory derived from the Miller-Urey experiments.

In 1953 a graduate student, Stanley Miller, and his professor, Harold Urey, performed an experiment that demonstrated how organic molecules could have spontaneously formed from inorganic precursors, under conditions like those posited by the Oparin-Haldane Hypothesis. The now-famous ‘Miller–Urey experiment’ used a highly reduced mixture of gases – methane, ammonia and hydrogen – to form basic organic monomers, such as amino acids. (Wikipedia)

Cairns-Smith spends four pages comprehensively demolishing this approach by showing that:

  1. the ultraviolet light its exponents claim could have helped synthesise organic molecules is in fact known to break covalent bonds and so degrade more than construct complex molecules
  2. regardless of light, most organic molecules are in fact very fragile and degrade easily unless kept in optimum conditions (i.e. inside a living cell)
  3. even if some organic molecules were created, organic chemists know only too well that there are hundreds of thousands of ways in which carbon, hydrogen, nitrogen and oxygen can combine, and most of them result in sticky sludges and tars in which nothing could ‘live’

So that:

  1. Only some of the molecules of life can be made this way
  2. Most of the molecules that would be made this way are emphatically not the ‘molecules of life’
  3. The ‘molecules of life’ are usually better made under conditions far most favourable than those obtaining back in the primordial soup era

He then does some back-of-a-matchbox calculations to speculate about how long it would take a random collection of organic molecules to ‘happen’ to all tumble together and create a life form: longer than the life of the universe, is his conclusion. No, this random approach won’t work.

Preliminary principles

Instead, he suggests a couple of principles of his own:

  1. That some and maybe all of the chemicals we now associate with ‘life’ were not present in the first replicating organisms; they came later; their exquisitely delicate interactivity suggests that they are the result not the cause of evolution
  2. Therefore, all lines of investigation which seek to account for the presence of the molecules of life are putting the cart before the horse: it isn’t the molecules which are important – it is the mechanism of replication with errors

Cairns-Smith thinks we should put the molecules of life question completely to one side, and instead seek for entirely inorganic systems which would replicate, with errors, so that the errors would be culled and more efficient ways of replicating tend to thrive on the available source material, beginning to create that dynamism and ‘sense of purpose’ which is one of life’s characteristics.

We keep coming to this idea that at some earlier phase of evolution, before life as we know it, there were other kinds of evolving system, other organisms that, in effect, invented our system. (p.61)

This seems, intuitively, like a more satisfying approach. Random forces will never make a MacBook Air and, as he has shown in chapter 4, even an entity like Escherichia coli is so staggeringly complex and amazingly finely-tuned as to be inconceivable as the product of chance.

Trying to show that complex molecules like ribosomes or RNA or amino acids – which rely on each other to be made and maintained, which cannot exist deprived of the intricately complicated interplay within each living cell – came about by chance is approaching the problem the wrong way. All these complex organic molecules must be the result of evolution. Evolution itself must have started with something much, much simpler – with the ‘invention’ of the basic engine, motor, the fundamental principle – and this is replication with errors. In other words:

Evolution started with ‘low-tech’ organisms that did not have to be, and probably were not made from, ‘the molecules of life’. (p.65)

Crystals

And it is at this point that Cairns-Smith introduces his Big Idea – the central role of clay crystals – in a chapter titled, unsurprisingly, ‘Crystals’ (pp.75-79).

He now explains in some detail the surprisingly complicated and varied world of clay crystals. These naturally form in various solutions and, if splashed up onto surfaces like rocks or stones, crystallise out into lattices, but the crystallisation process also commonly involves errors and mutations.

His description of the different types of crystals and their properties is fascinating – who knew there were so many types, shapes, patterns and processes, starting with an introduction to the processes of saturation and super-saturation. The point is that crystals naturally occur and naturally mutate. He lists the ways they can vary or diverge from their ‘pure’ forms: twinning, stacking errors, cation substitutions, growth in preferred directions, break-up along preferred planes (p.97).

There follows a chapter about the prevalence of crystals in mud and clay and, therefore, their widespread presence in the conditions of the early planet earth.

And then, finally, he explains the big leap whereby replicating crystals may have attracted to themselves other molecules.

There follows a process of natural selection for clay crystals that trap certain forms of molecules to their surfaces that may enhance their replication potential. Complex proto-organic molecules can be catalysed by the surface properties of silicates.

Genetic takeover of the crystals

It is at this point that he introduces the idea of a ‘genetic takeover’.

When complex molecules perform a ‘genetic takeover’ from their clay ‘vehicle’, they become an independent locus of replication – an evolutionary moment that might be understood as the first exaptation.

(Exaptation = ‘the process by which features acquire functions for which they were not originally adapted or selected’)

Cairns-Smith had already described this process – the ‘genetic takeover’ of an initial, non-organic process by more complex, potentially organic molecules – in his earlier, longer and far more technical book, Genetic Takeover: And the Mineral Origins of Life, published in 1982.

This book – the Seven Clues – is a much shorter, non-technical and more accessible popularisation of the earlier tome. Hence the frivolous references to Sherlock Holmes.

Proliferating crystals form the scaffold for molecules which learn to replicate without them

The final chapter explains how these very common and proliferating entities (clay crystals) might have formed into structures and arrangements which attracted – for purely chemical reasons – various elementary organic molecules to themselves.

Certain repeating structures might attract molecules which then build up into more complex molecules, into molecules which are more efficient at converting the energy of the sun into further molecular combinations. And thus the principle of replication with variation, and competition for resources among the various types of replicating molecule, would have been established.

Thoughts

At this point the book ends, his case presented. It has been a fascinating journey because a) it is interesting to learn about all the different shapes and types of clay crystal b) he forces the reader to think about the fundamental engineering and logistical aspects of life forms, to consider the underlying principles which must inform all life forms, which is challenging and rewarding.

But, even in his own terms, Cairns-Smith’s notion of more and more complex potentially organic molecules being haphazardly replicated on a framework of proliferating clay crystals is still a long, long, long way from even the most primitive life forms known to us, with their vastly complex structure of cell membrane, nucleus and internal sea awash with DNA-controlled biochemical processes.


Related links

Reviews of other science books

Chemistry

Cosmology

The Environment

Genetics and life

Human evolution

Maths

Particle physics

Psychology

The Double Helix by James Watson (1968)

The short paper by James Watson and Francis Crick establishing the helical structure of the DNA molecule was published in the science journal, Nature, on April 25, 1953. The blurb of this book describes it as the scientific breakthrough of the 20th century. Quite probably, although it was a busy century – the discovery of antibiotics was quite important, too, not to mention the atom bomb.

James Watson and Francis Crick with their DNA model at the Cavendish Laboratories in 1953

Anyway, what makes this first-person account of the events leading up to the discovery such fun is Watson’s prose style and mentality. He is fearless. He takes no prisoners. He is brutally honest about his own shortcomings and everyone else’s and, in doing so, sheds extraordinarily candid light on how science is actually done. He tells us that foreign conferences where nobody speaks English are often pointless. Many scientists are just plain stupid. Some colleagues are useless, some make vital contributions at just the right moment.

Watson has no hesitation in telling us that, when he arrived in Cambridge in 1951, aged just 23, he was unqualified in almost every way – although he had a degree from the University of Chicago, he had done his best to avoid learning any physics or chemistry, and as a graduate student at Indiana he had also avoided learning any chemistry. In fact the book keeps referring to his astonishing ignorance of almost all the key aspects of the field he was meant to be studying.

The one thing he did have was a determination to solve the problem which had been becoming ever-more prominent in the world of biology, what is a gene? Watson says he was inspired by Erwin Schrödinger’s 1946 book, What Is Life? which pointed out that ‘genes’ were the key component of living cells and that, to understand what life is, we must understand what genes are and how they work. The bacteriologist O.T. Avery had already shown that hereditary traits were passed from one bacterium to another by purified DNA molecules, so this much was common knowledge in the scientific community.

DNA was probably the agent of hereditary traits, but what did it look like and how did it work?

Our hero gets a U.S. government research grant to go to Copenhagen to study with biochemist Herman Kalckar, his PhD supervisor Salvador Luria hoping the Dane would teach him something but… no. Watson’s interest wasn’t sparked, partly because Kalckar was working on the structure of nucleotides, which young Jim didn’t think were immediately relevant to his quest, also because Herman was hard to understand –

At times I stood about nervously while Herman went through the motions of a biochemist, and on several days I even understood what he said. (p.34)

A situation compounded when Herman began to undergo a painful divorce and his mind wandered from his work altogether.

It was a chance encounter at a conference in Naples that motivated Watson to seek out the conducive-sounding environment of Cambridge (despite the reluctance of his funding authorities back in the States to let him go so easily). John Kendrew, the British biochemist and crystallographer, at that point studying the structure of myoglobin, helped smooth his passage to the fens.

Head of the Cavendish Laboratory in Cambridge where Watson now found himself was Sir Lawrence Bragg, Nobel Prize winner and one of the founders of crystallography. The unit collecting X-ray diffraction photographs of haemoglobin was headed up by the Austrian Max Perutz, and included Francis Crick, at this stage (in 1951) 35-years-old and definitely an acquired taste. Indeed the famous opening sentence of the book is:

I have never seen Francis Crick in a modest mood.

followed by the observation that:

he talked louder and faster than anybody else, and when he laughed, his location within the Cavendish was obvious.

So he had found a home of sorts and, in Francis Crick, a motormouth accomplice who was also obsessed by DNA – but there were two problems.

  1. The powers that be didn’t like Crick, who was constantly getting into trouble and nearly got thrown out when he accused the head of the lab, Bragg, of stealing one of his ideas in a research paper.
  2. Most of the work on the crystallography of DNA was being done at King’s College, London, where Maurice Wilkins had patiently been acquiring X-rays of the molecule for nearly ten years.

There was a sub-problem here which was that Wilkins was being forced to work alongside Rosalind Franklin, an expert in X-ray crystallography, who was an independent-minded 31-year-old woman (b.1920) and under the impression that she had been invited in to lead the NA project. The very young Watson and the not-very-securely-based Crick both felt daunted at having to ask to borrow and interpret Wilkins’s material, not least because he himself would have to extract it from the sometimes obstreperous Franklin.

And in fact there was a third big problem, which was that Linus Pauling, probably the world’s leading chemist and based at Cal Tech in the States, was himself becoming interested in the structure of DNA and the possibility that it was the basis of the much-vaunted hereditary material.

Pauling’s twinkling eyes and dramatic flair when making presentations is vividly described (pp.37-8). Along the same lines, Watson later gives a deliberately comical account of how he is scoffed and ignored by the eminent biochemist Erwin Chargaff after making some (typically) elementary mistakes in basic chemical bonding.

It is fascinating to read the insights scattered throughout the book about the relative reputations of the different areas of science – physics, biology, biochemistry, crystallography and so on. Typical comments are:

  • ‘the witchcraft-like techniques of the biochemist’, p.63
  • ‘In England, if not everywhere, most botanists and zoologists were a muddled lot.’ p.63

In a typical anecdote, after attending a lecture in London given by Franklin about her work, Watson goes for a Chinese meal in Soho with Maurice Wilkins who is worried that he made a mistake moving into biology, compared to the exciting and well-funded world of physics.

The physics of the time was dominated by the aftershock of the massive wartime atom bomb project, and with ongoing work to develop both the H-bomb and peacetime projects for nuclear power.

During the war Wilkins had helped to develop improved radar screens at Birmingham, then worked on isotope separation at the Manhattan Project at the University of California, Berkeley. Now he was stuck in a dingy lab in King’s College arguing with Franklin almost every day about who should use the best samples of DNA and the X-ray equipment and so on. (Later on, Watson tells us Wilkins’ and Franklin’s relationship deteriorated so badly that he (Watson) was worried about lending the London team the Cambridge team’s wire models in case Franklin strangled Wilkins with them. At one point, when Watson walks in on Franklin conducting an experiment, she becomes so angry at him he is scared she’s going to attack him. Wilkins confirms there have been occasions when he has run away in fear of her assaulting him.)

It’s in this respect – the insights into the way the lives of scientists are as plagued by uncertainty, professional rivalry, and doubts about whether they’re in the right job, or researching the right subject, gnawing envy of more glamorous, better-funded labs and so on – that the book bursts with insight and human interest.

Deoxyribonucleic acid

By about page 50 Watson has painted vivid thumbnail portraits of all the players involved in the story, the state of contemporary scientific knowledge, and the way different groups or individuals (Wilkins, Franklin, Pauling, Crick and various crystallographer associates at the Cavendish) are all throwing around ideas and speculations about the structure of DNA, on bus trips, in their freezing cold digs, or over gooseberry pie at their local pub, the Eagle in Cambridge (p.75).

For the outsider, I think the real revelation is learning how very small the final achievement of Crick and Watson seems. Avery had shown that DNA was the molecule of heredity. Chergaff had shown it contained equal parts of the four bases. Wilkins and Franklin had produced X-ray photos which strongly hinted at the structure and the famous photo 51 from their lab put it almost beyond doubt that DNA had a helix structure. Pauling, in America, had worked out the helical structure of other long proteins and had now began to speculate about DNA (although Watson conveys his and Crick’s immense relief that Pauling’s paper on the subject, published in early 1953, betrayed some surprisingly elementary mistakes in its chemistry.) But the clock was definitely ticking very loudly, rivals were closing in on the answer, and the pages leading up to the breakthrough are genuinely gripping.

In other words, the final deduction of the double helix structure doesn’t come out of the blue; the precise opposite; from Watson’s account it seems like it would have only been a matter of time before one or other of these groups had stumbled across the correct structure.

But it is very exciting when Watson comes into work one day, clears all the clutter from his desk and starts playing around with pretty basic cardboard cutouts of the four molecules which, by now, had become strongly associated with DNA, adenine and guanine, cytosine and thymine.

Suddenly, in a flash, he sees how they assemble the molecules naturally arrange themselves into pairs linked by hydrogen bonds – adenine with thymine and cytosine with guanine.

For a long time they’d been thinking the helix had one strand at the core and that the bases stuck out from it, like quills on a porcupine. Now, in a flash, Watson realises that the the base pairs, which join together so naturally, form a kind of zip, and the bands of sugar-phosphates holding the thing together run along the outside – creating a double helix shape.

The structure of the DNA double helix. The atoms in the structure are colour-coded by element and the detailed structures of two base pairs are shown in the bottom right. (Source: Wikipedia)

Conclusion

I am not qualified to summarise the impact of the discovery of DNA has had on the world. Maybe it would take books to do so adequately. I’ll quote the book’s blurb:

By elucidating the structure of DNA, the molecule underlying all life, Francis Crick and James Watson revolutionised biochemistry. At the time, Watson was only 24. His uncompromisingly honest account of those heady days lifts the lid on the real world of great scientists, with their very human faults and foibles, their petty rivalries and driving ambition. Above all, he captures the extraordinary excitement of their desperate efforts to beat their rivals at King’s College to the solution to one of the great enigmas of the life sciences.

The science is interesting, but has been overtaken and superseded generations ago. It’s the characters and the atmosphere of the time (the dingy English rooms with no heating, the appalling English food), the dramatic reality of scientific competition, and then the genuinely exciting pages leading up to the breakthrough which makes Watson’s book such a readable classic.

Rosalind Franklin

I marked all the places in the text where a feminist might explode with anger. Both Watson, but even more Crick, assume pretty young girls are made for their entertainment. They are referred to throughout as ‘popsies’ and Crick in particular, although married, betrays an endless interest in the pretty little secretaries and au pairs which adorn Cambridge parties.

It is through this patronising and sexist prism that the pair judged the efforts of Franklin who was, reasonably enough, a hard-working scientist not at all interested in her appearance or inclined to conform to gender stereotypes of the day. She felt marginalised and bullied at the King’s College lab, and irritated by the ignorance and superficiality of most of Watson and Crick’s ideas, untainted as they were by any genuine understanding of the difficult art of X-ray crystallography – an ignorance which Watson, to his credit, openly admits.

Eventually, Franklin found working with Wilkins so intolerable that she left to take up a position at Birkbeck College and then, tragically, discovered she had incurable cancer, although she worked right up to her death in April 1958.

Franklin has become a feminist heroine, a classic example of a woman struggling to make it in a man’s world, patronised by everyone around her. But if you forget her gender and just think of her as the scientist called Franklin, it is still a story of misunderstandings and poisonous professional relations such as I’ve encountered in numerous workplaces. Watson and Crick’s patronising tone must have exacerbated the situation, but the fundamental problem was that she was given clear written instructions that she would be in charge of the X-ray crystallography at King’s College but then discovered that Wilkins thought he had full control of the project. This was a management screw-up more than anything else.

It does seem unfair that she wasn’t cited in the Nobel Prize which was awarded to Crick, Watson and Wilkins in 1962, but then she had died in 1958, and the Swedish Academy had a simple rule of not awarding the prize to dead people.

Still, it’s not like her name has disappeared from the annals of history. Quite the reverse:

Impressive list, don’t you think?

And anyone who hasn’t read the book might be easily persuaded that she was an unjustly victimised, patronised and ignored figure. But just to set the record straight, Watson chooses to end the entire book not with swank about his and Crick’s later careers, but with a tribute to Franklin’s character and scientific achievement.

In 1958, Rosalind Franklin died at the early age of thirty-seven. Since my initial impressions of her, both scientific and personal (as recorded in the early pages of this book), were often wrong, I want to say something here about her achievements. The X-ray work she did at King’s is increasingly regarded as superb. The sorting out of the A and B forms [of DNA], by itself, would have made her reputation; even better was her 1952 demonstration, using Patterson superposition methods, that the phosphate groups must be on the outside of the DNA molecule. Later, when she moved to Bernal’s lab, she took up work on tobacco mosaic virus and quickly extended our qualitative ideas about helical construction into a precise quantitative picture, definitely establishing the essential helical parameters and locating the ribonucleic chain halfway out from the central axis.

Because I was then teaching in the States, I did not see her as often as did Francis, to whom she frequently came for advice or when she had done something very pretty, to be sure he agreed with her reasoning. By then all traces of our early bickering were forgotten, and we both came to appreciate greatly her personal honesty and generosity, realising years too late the struggles that the intelligent woman faces to be accepted by a scientific world which often regards women as mere diversions from serious thinking. Rosalind’s exemplary courage and integrity were apparent to all when, knowing she was mortally ill, she did not complain but continued working on a high level until a few weeks before her death. (p.175)

That is a fine, generous and moving tribute, don’t you think? And as candid and honest as the rest of the book in admitting his and Crick’s complete misreading of her situation and character.

In a literal sense the entire book leads up to this final page [these are the last words of the book] and this book became a surprise bestseller and the standard source to begin understanding the events surrounding the discovery. So it’s hard to claim that her achievement was ‘suppressed’ or ‘ignored’ when this is the climax of the best-selling account of the story.


Related links

Reviews of other science books

Chemistry

Cosmology

The Environment

Genetics and life

Human evolution

Maths

Particle physics

Psychology

The Periodic Kingdom: A Journey Into the Land of the Chemical Elements by Peter Atkins (1995)

Chemistry is the science of changes in matter. (p.37)

At just under 150 pages long, A Journey Into the Land of the Chemical Elements is intended as a novel and imaginative introduction to the 118 or so chemical elements which are the basic components of chemistry, and which, for the past 100 years or so, have been laid out in the grid arrangement known as the periodic table.

The periodic table explained

Just to refresh your memory, it’s called the periodic table because it is arranged into rows called ‘periods’. These are numbered 1 to 7 down the left-hand side.

What is a period? The ‘period number’ of an element signifies ‘the highest energy level an electron in that element occupies (in the unexcited state)’. To put it another way, the ‘period number’ of an element is its number of atomic orbitals. An orbital is the number of orbital positions an electron can take around the nucleus. Think of it like the orbit of the earth round the sun.

For each element there is a limited number of these ‘orbits’ which electrons can take up. Hydrogen, in row one, can only have one electron because it only has one possible orbital for an electron to take up around its nucleus. All the elements in row 2 have two orbitals for their electrons, and so on.

Sodium, for instance, sits in the third period, which means a sodium atom typically has electrons in the first three energy levels. Moving down the table, periods are longer because it takes more electrons to fill the larger and more complex outer levels.

The columns of the table are arranged into ‘groups’ from 1 to 18 along the top. Elements that occupy the same column or group have the same number of electrons in their outer orbital. These outer electrons are called ‘valence electrons’. The electrons in the outer orbital are the first ones to be involved in chemical bonds with other elements; they are relatively easy to dislodge, the ones in the lower orbitals progressively harder.

Elements with identical ‘valance electron configurations’ tend to behave in a similar fashion chemically. For example, all the elements in group or column 18 are gases which are slow to interact with other chemicals and so are known as the inert gases – helium, neon etc. Atkins describes the amazing achievement of the Scottish chemist William Ramsey in discovering almost all the inert gases in the 1890s.

Although there are 18 columns, the actual number of electrons in the outer orbital only goes up to 8. Take nitrogen in row 2 column 15. Nitrogen has the atomic number seven. The atomic number means there are seven electrons in a neutral atom of nitrogen. How many electrons are in its outer orbital? Although nitrogen is in the fifteenth column, that column is actually labelled ‘5A’. 5 represents the number of electrons in the outer orbital. So all this tells you that nitrogen has seven electrons in two orbitals around the nucleus, two in the first orbital and five in the second (2-5).

 

The Periodic Table. Karl Tate © LiveScience.com

Note that each element has two numbers in its cell. The one at the top is the atomic number. This is the number of protons in the nucleus of the element. Note how the atomic number increases in a regular, linear manner, from 1 for hydrogen at the top left, to 118 for Oganesson at the bottom right. After number 83, bismuth, all the elements are radioactive.

(N.B. When Atkins’s book was published in 1995 the table stopped at number 109, Meitnerium. As I write this, 24 years later, it has been extended to number 118, Oganesson. These later elements have been created in minute quantities in laboratories and some of them only exist for a few moments.)

Beneath the element name is the atomic weight. This is the mass of a given atom, measured on a scale in which the hydrogen atom has the weight of one. Because most of the mass in an atom is in the nucleus, and each proton and neutron has an atomic weight near one, the atomic weight is very nearly equal to the number of protons and neutrons in the nucleus.

Note the freestanding pair of rows at the bottom, coloured in purple and orange. These are the lanthanides and actinides. We’ll come to them in a moment.

Not only are the elements arranged into periods and groups but they are also categorised into groupings according to their qualities. In this diagram (taken from LiveScience.com) the different groupings are colour-coded. The groupings are, moving from left to right:

Alkali metals The alkali metals make up most of Group 1, the table’s first column. Shiny and soft enough to cut with a knife, these metals start with lithium (Li) and end with francium (Fr), among the rarest elements on earth: Atkins tells us that at any one moment there are only seventeen atoms of francium on the entire planet. The alkali metals are extremely reactive and burst into flame or even explode on contact with water, so chemists store them in oils or inert gases. Hydrogen, with its single electron, also lives in Group 1, but is considered a non-metal.

Alkaline-earth metals The alkaline-earth metals make up Group 2 of the periodic table, from beryllium (Be) through radium (Ra). Each of these elements has two electrons in its outermost energy level, which makes the alkaline earths reactive enough that they’re rarely found in pure form in nature. But they’re not as reactive as the alkali metals. Their chemical reactions typically occur more slowly and produce less heat compared to the alkali metals.

Lanthanides The third group is much too long to fit into the third column, so it is broken out and flipped sideways to become the top row of what Atkins calls ‘the Southern Island’ that floats at the bottom of the table. This is the lanthanides, elements 57 through 71, lanthanum (La) to lutetium (Lu). The elements in this group have a silvery white color and tarnish on contact with air.

Actinides The actinides line forms the bottom row of the Southern Island and comprise elements 89, actinium (Ac) to 103, lawrencium (Lr). Of these elements, only thorium (Th) and uranium (U) occur naturally on earth in substantial amounts. All are radioactive. The actinides and the lanthanides together form a group called the inner transition metals.

Transition metals Returning to the main body of the table, the remainder of Groups 3 through 12 represent the rest of the transition metals. Hard but malleable, shiny, and possessing good conductivity, these elements are what you normally associate with the word metal. This is the location of many of the best known metals, including gold, silver, iron and platinum.

Post-transition metals Ahead of the jump into the non-metal world, shared characteristics aren’t neatly divided along vertical group lines. The post-transition metals are aluminum (Al), gallium (Ga), indium (In), thallium (Tl), tin (Sn), lead (Pb) and bismuth (Bi), and they span Group 13 to Group 17. These elements have some of the classic characteristics of the transition metals, but they tend to be softer and conduct more poorly than other transition metals. Many periodic tables will feature a highlighted ‘staircase’ line below the diagonal connecting boron with astatine. The post-transition metals cluster to the lower left of this line. Atkins points out that all the elements beyond bismuth (row 6, column 15) are radioactive. Here be skull-and-crossbones warning signs.

Metalloids The metalloids are boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po). They form the staircase that represents the gradual transition from metals to non-metals. These elements sometimes behave as semiconductors (B, Si, Ge) rather than as conductors. Metalloids are also called ‘semi-metals’ or ‘poor metals’.

Non-metals Everything else to the upper right of the staircase (plus hydrogen (H), stranded way back in Group 1) is a non-metal. These include the crucial elements for life on earth, carbon (C), nitrogen (N), phosphorus (P), oxygen (O), sulfur (S) and selenium (Se).

Halogens The top four elements of Group 17, from fluorine (F) through astatine (At), represent one of two subsets of the non-metals. The halogens are quite chemically reactive and tend to pair up with alkali metals to produce various types of salt. Common salt is a marriage between the alkali metal sodium and the halogen chlorine.

Noble gases Colorless, odourless and almost completely non-reactive, the inert, or noble gases round out the table in Group 18. The low boiling point of helium makes it a useful refrigerant when exceptionally low temperatures are required; most of them give off a colourful display when electric current is passed through them, hence the generic name of neon lights, invented in 1910 by Georges Claude.

The metaphor of the Periodic Kingdom

In fact the summary I’ve given above isn’t at all how Atkins’s book sounds. It is the way I have had to make notes to myself to understand the table.

Atkins’ book is far from being so clear and straightforward. The Periodic Kingdom is dominated by the central conceit that Atkins treats the periodic table as if it were an actual country. His book is not a comprehensive encyclopedia of biochemistry, mineralogy and industrial chemistry; it is a light-hearted ‘traveller’s guide’ (p.27) to the table which he never refers to as a table, but as a kingdom, complete with its own geography, layout, mountain peaks and ravines, and surrounded by a sea of nothingness.

Hence, from start to finish of the book, Atkins uses metaphors from landscape and exploration to describe the kingdom, talking about ‘the Western desert’, ‘the Southern Shore’ and so on. Here’s a characteristic sentence:

The general disposition of the land is one of metals in the west, giving way, as you travel eastward, to a varied landscape of nonmetals, which terminates in largely inert elements at the eastern shoreline. (p.9)

I guess the idea is to help us memorise the table by describing its characteristics and the changes in atomic weight, physical character, alkalinity, reactivity and so on of the various elements, in terms of geography. Presumably he thinks it’s easier to remember geography than raw information. His approach certainly gives rise to striking analogies:

North of the mainland, situated rather like Iceland off the northwestern edge of Europe, lies a single, isolated region – hydrogen. This simple but gifted element is an essential outpost of the kingdom, for despite its simplicity it is rich in chemical personality. It is also the most abundant element in the universe and the fuel of the stars. (p.9)

Above all the extended metaphor (the periodic table imagined as a country) frees Atkins not to have to lay out the subject in either a technical nor a chronological order but to take a pleasant stroll across the landscape, pointing out interesting features and making a wide variety of linkages, pointing out the secret patterns and subterranean connections between elements in the same ‘regions’ of the table.

There are quite a few of these, for example the way iron can easily form alliances with the metals close to it such as cobalt, nickel and manganese to produce steel. Or the way the march of civilisation progressed from ‘east’ to ‘west’ through the metals, i.e. moving from copper, to iron and steel, each representing a new level of culture and technology.

The kingdom metaphor also allows him to get straight to core facts about each element without getting tangled in pedantic introductions: thus we learn there would be no life without nitrogen which is a key building block of all proteins, not to mention the DNA molecule; or that sodium and potassium (both alkali metals) are vital in the functioning of brain and nervous system cells.

And hence the generally light-hearted, whimsical tone allows him to make fanciful connections: calcium is a key ingredient in the bones of endoskeletons and the shells of exoskeletons, compacted dead shells made chalk, but in another format made the limestone which the Romans and others ground up to make the mortar which held their houses together.

Then there is magnesium. I didn’t think magnesium was particularly special, but learned from Atkins that a single magnesium atom is at the heart of the chlorophyll molecule, and:

Without chlorophyll, the world would be a damp warm rock instead of the softly green haven of life that we know, for chlorophyll holds its magnesium eye to the sun and captures the energy of sunlight, in the first step of photosynthesis. (p.16)

You see how the writing is aspiring to an evocative, poetic quality- a deliberate antidote to the dry and factual way chemistry was taught to us at school. He means to convey the sense of wonder, the strange patterns and secret linkages underlying these wonderful entities. I liked it when he tells us that life is about capturing, storing and deploying energy.

Life is a controlled unwinding of energy.

Or about how phosphorus, in the form of adenosine triphosphate (ATP) is a perfect vector for the deployment of energy, common to all living cells. Hence the importance of phosphates as fertiliser to grow the plants we need to survive. Arsenic is such an effective poison because it is a neighbour of phosphorus, shares some of its qualities, and so inserts itself into chemical reactions usually carried out by phosphorus but blocking them, nulling them, killing the host organism.

All the facts I explained in the first half of this post (mostly cribbed from the LiveScience.com website) are not reached or explained until about page 100 of this 150-page-long book. Personally, I felt I needed them earlier. As soon as I looked at the big diagram of the table he gives right at the end of the book I became intrigued by the layout and the numbers and couldn’t wait for him to get round to explaining them, which is why I went on the internet to find out more, more quickly, and why Istarted my review with a factual summary.

And eventually, the very extended conceit of ‘the kingdom’ gets rather tiresome. Whether intentional or not, the continual references to ‘the kingdom’ begin to sound Biblical and pretentious.

Now the kingdom is virtually fully formed. It rises above the sea of nonbeing and will remain substantially the same almost forever. The kingdom was formed in and among the stars.. (p.75)

The chapter on the scientists who first isolated the elements and began sketching out the table continues the metaphor by referring to them as ‘cartographers’, and the kingdom as made of islands and archipelagos.

As an assistant professor of chemistry at the University of Jena, [Johann Döbereiner] noticed that reports of some of the kingdom’s islands – reports brought back by their chemical explorers – suggested a brotherhood of sorts between the regions. (p.79)

For me, the obsessive use of the geographical metaphor teeters on the border between being useful, and becoming irritating. He introduces me to the names of the great pioneers – I was particularly interested in Dalton, Michael Faraday, Humphrey Davy (who isolated a bunch of elements in the early 1800s) and then William Ramsey – but I had to go to Wikipedia to really understand their achievements.

Atkins speculates that some day we might find another bunch or set of elements, which might even form an entire new ‘continent’, though it is unlikely. This use of a metaphor is sort of useful for spatially imagining how this might happen, but I quickly got bored of him calling this possible set of new discoveries ‘Atlantis’, and of the poetic language as a whole.

Is the kingdom eternal, or will it slip beneath the waves? There is a good chance that one day – in a few years, or a few hundred years at most – Atlantis will be found, which will be an intellectual achievement but probably not one of great practical significance…

A likely (but not certain) scenario is that in that distant time, perhaps 10100 years into the future, all matter will have decayed into radiation, it is even possible to imagine the process. Gradually the peaks and dales of the kingdom will slip away and Mount Iron will rise higher, as elements collapse into its lazy, low-energy form. Provided that matter does not decay into radiation first (which is one possibility), the kingdom will become a lonely pinnacle, with iron the only protuberance from the sea of nonbeing… (p.77)

And I felt the tone sometimes bordered on the patronising.

The second chemical squabble is in the far North, and concerns the location of the offshore Northern Island of hydrogen. To those who do not like offshore islands, there is the problem of where to put it on the mainland. This is the war of the Big-Endians versus the Little-Endians. Big-Endians want to tow the island ashore to form a new Northwestern Cape, immediately north of lithium and beryllium and across from the Northeastern Cape of helium… (p.90)

Hard core chemistry

Unfortunately, none of these imaginative metaphors can help when you come to chapter 9, an unexpectedly brutal bombardment of uncompromising hard core information about the quantum mechanics underlying the structure of the elements.

In quick succession this introduces us to a blizzard of ideas: orbitals, energy levels, Pauli’s law of exclusion, and then the three imaginary lobes of orbitals.

As I understood it, the Pauli exclusion principle states that no two electrons can inhabit a particular orbital or ‘layer’ or shell. But what complicates the picture is that these orbitals come in three lobes conceived as lying along imaginary x, y and z axes. This overlapped with the information that there are four types of orbitals – s, p, d and f orbitals. In addition, there are three p-orbitals, five d-orbitals, seven f-orbitals. And the two lobes of a p-orbital are on either side of an imaginary plane cutting through the nucleus, there are two such planes in a d-orbital and three in an f-orbital.

After pages of amiable waffle about kingdoms and Atlantis, this was like being smacked in the face with a wet towel. Even rereading the chapter three times, I still found it impossible to process and understand this information.

I understand Atkins when he says it is the nature of the orbitals, and which lobes they lie along, which dictates an element’s place in the table, but he lost me when he said a number of electrons lie inside the nucleus – which is the opposite of everything I was ever taught – and then when described the way electrons fly across or through the nucleus, something to do with the processes of ‘shielding’ and ‘penetration’.

The conspiracy of shielding and penetration ensure that the 2s-orbital is somewhat lower in energy than the p-orbitals of the same rank. By extension, where other types of orbitals are possible, ns- and np-orbitals both lie lower in energy than nd-orbitals, and nd-orbitals in turn have lower energy than nf-orbitals. An s-orbital has no nodal plane, and electrons can be found at the nucleus. A p-orbital has one plane, and the electron is excluded from the nucleus. A d-orbital has two intersecting planes, and the exclusion of the electron is greater. An f-orbital has three planes, and the exclusion is correspondingly greater still. (p.118)

Note how all the chummy metaphors of kingdoms and deserts and mountains have disappeared. This is the hard-core quantum mechanical basis of the elements, and at least part of the reason it is so difficult to understand is because he has made the weird decision to throw half a dozen complex ideas at the reader at the same time. I read the chapter three times, still didn’t get it, and eventually wanted to cry with frustration.

This online lecture gives you a flavour of the subject, although it doesn’t mention ‘lobes’ or penetration or shielding.

In the next chapter, Atkins, briskly assuming  his readers have processed and understood all of this information, goes on to combine the stuff about lobes and orbitals with a passage from earlier in the book, where he had introduced the concept of ions, cations, and anions:

  • ion an atom or molecule with a net electric charge due to the loss or gain of one or more electrons
  • cation a positively charged ion
  • anion a negatively charged ion

He had also explained the concept of electron affinity

The electron affinity (Eea) of an atom or molecule is defined as the amount of energy released or spent when an electron is added to a neutral atom or molecule in the gaseous state to form a negative ion.

Isn’t ‘affinity’ a really bad word to describe this? ‘Affinity’ usually means ‘a natural liking for and understanding of someone or something’. If it is the amount of energy released, why don’t they call it something useful like the ‘energy release’? I felt the same about the terms ‘cation’ and ‘anion’ – that they had been deliberately coined to mystify and confuse. I kept having to stop and look up what they meant since the name is absolutely no use whatsoever.

And the electronvolt – ‘An electronvolt (eV) is the amount of kinetic energy gained or lost by a single electron accelerating from rest through an electric potential difference of one volt in vacuum.’

Combining the not-very-easily understandable material about electron volts with the incomprehensible stuff about orbitals means that the final 30 pages or so of The Periodic Kingdom is thirty pages of this sort of thing:

Take sodium: it has a single electron outside a compact, noble-gaslike core (its structure is [Ne]3s¹). The first electron is quite easy to remove (its removal requires an investment of 5.1 eV), but removal of the second, which has come from the core that lies close to the nucleus, requires an enormous energy – nearly ten times as much, in fact (47.3 eV). (p.130)

This reminds me of the comparable moment in John Allen Paulos’s book Innumeracy where I ceased to follow the argument. After rereading the passage where I stumbled and fell I eventually realised it was because Paulos had introduced three or so important facts about probability theory very, very quickly, without fully explaining them or letting them bed in – and then had spun a fancy variation on them…. leaving me standing gaping on the shore.

Same thing happens here. I almost but don’t quite understand what [Ne]3s¹ means, and almost but don’t quite grasp the scale of electronvolts, so when he goes on to say that releasing the second electron requires ten times as much energy, of course I understand the words, but I cannot quite grasp why it should be so because I have not understood the first two premises.

As with Paulos, the author has gone too fast. These are not simple ideas you can whistle through and expect your readers to lap up. These are very, very difficult ideas most readers will be completely unused to.

I felt the sub-atomic structure chapter should almost have been written twice, approached from entirely different points of view. Even the diagrams were no use because I didn’t understand what they were illustrating because I didn’t understand his swift introduction of half a dozen impenetrable concepts in half a page.

Once through, briskly, is simply not enough. The more I tried to reread the chapter, the more the words started to float in front of my eyes and my brain began to hurt. It is packed with sentences like these:

Now imagine a 2 p-electron… (an electron that occupies a 2 p-orbital). Such an electron is banished from the nucleus on account of the existence of the nodal plane. This electron is more completely shielded from the pull of the nucleus, and so it is not gripped as tightly.In other words, because of the interplay of shielding and penetration, a 2 s-orbital has a lower energy (an electron in it is gripped more tightly) than a 2 p-orbital… Thus the third and final electron of lithium enters the 2 s-orbital, and its overall structure is 1s²2s¹. (p.118)

I very nearly understand what some of these words meant, but the cumulative impact of sentences like these was like being punched to the ground and then given a good kicking. And when the last thirty pages went on to add the subtleties of electronvoltages and micro-electric charges into the mix, to produce ever-more complex explanations for the sub-atomic interactivity of different elements, I gave up.

Summary

The first 90 or so pages of The Periodic Kingdom do manage to give you a feel for the size and shape and underlying patterns of the periodic table. Although it eventually becomes irritating, the ruling metaphor of seeing the whole place as a country with different regions and terrains works – up to a point – to explain or suggest the patterns of size, weight, reactivity and so on underlying the elements.

When he introduced ions was when he first lost me, but I stumbled on through the entertaining trivia and titbits surrounding the chemistry pioneers who first isolated and named many of the elements and the first tentative attempts to create a table for another thirty pages or so.

But the chapter about the sub-atomic structure of chemical elements comprehensively lost me. I was already staggering, and this finished me off.

If Atkins’s aim was to explain the basics of chemistry to an educated layman, then the book was, for me, a complete failure. I sort of quarter understood the orbitals, lobes, nodes section but anything less than 100% understanding means you won’t be able to follow him to the next level of complexity.

As with the Paulos book, I don’t think I failed because I am stupid – I think that, on both occasions, the author failed to understand how challenging his subject matter is, and introduced a flurry of concepts far too quickly, at far too advanced a level.

Looking really closely I realise it is on the same page (page 111) that Atkins introduces the concepts of energy levels, orbitals, the fact that there are three two-lobed orbitals, and the vital existence of nodal planes. On the same page! Why the rush?

An interesting and seemingly trivial feature of a p-orbital, but a feature on which the structure of the kingdom will later be seen to hinge, is that the electron will never be found on the imaginary plane passing through the nucleus and dividing the two lobes of the orbital. This plane is called a nodal plane. An s-orbital does not have such a nodal plane, and the electron it describes may be found at the nucleus. Every p-orbital has a nodal plane of this kind, and therefore an electron that occupies a p-orbital will never be found at the nucleus. (p.111)

Do you understand that? Because if you don’t, you won’t understand the last 40 or so pages of the book, because this is the ‘feature on which the structure of the kingdom will later be seen to hinge’.

I struggled through the final 40 pages weeping tears of frustration, and flushed with anger at having the thing explained to me so badly. Exactly how I felt during my chemistry lessons at school forty years ago.


Related links

Reviews of other science books

Chemistry

Cosmology

The Environment

Genetics and life

Human evolution

Maths

Particle physics

Psychology

The Origin of the Universe by John D. Barrow (1994)

In the beginning, the universe was an inferno of radiation, too hot for any atoms to survive. In the first few minutes, it cooled enough for the nuclei of the lighter elements to form. Only millions of years later would the cosmos be cool enough for whole atoms to appear, followed soon by simple molecules, and after billions of years by the complex sequence of events that saw the condensation of material into stars and galaxies. Then, with the appearance of stable planetary environments, the complicated products of biochemistry were nurtured, by processes we still do not understand. (The Origin of the Universe, p.xi)

In the late 1980s and into the 1990s science writing became fashionable and popular. A new generation of science writers poured forth a wave of books popularising all aspects of science. The ones I remember fell into two broad categories, evolution and astrophysics. Authors such as Stephen Jay Gould and Edward O. Wilson, Richard Dawkins and Steve Jones (evolution and genetics) and Paul Davies, John Gribbin, John Polkinghorne and, most famously of all, Stephen Hawking, (cosmology and astrophysics) not only wrote best-selling books but cropped up as guests on radio shows and even presented their own TV series.

Early in the 1990s the literary agent John Brockman created a series titled Science Masters in which he commissioned experts across a wide range of the sciences to write short, jargon-free and maths-light introductions to their fields.

This is astrophysicist John D. Barrow’s contribution to the series, a short, clear and mind-blowing introduction to current theory about how our universe began.

The Origin of the Universe

Billions It is now thought the universe is about 13.7 billion years old, the solar system is 4.57 billion years old and the earth is 4.54 billion years old. The oldest surface rocks anywhere on earth are in northwestern Canada near the Great Slave Lake, and are 4.03 billion years. The oldest fossilised bacteria date from 3.48 billion years ago.

Visible universe The visible universe is the part of the universe which light has had time to cross and reach us. If the universe is indeed 13.7 billion years old, and nothing can travel faster than the speed of light (299,792,458 metres per second) then there is, in effect, a ‘horizon’ to what we can see. We can only see the part of the universe which is about 13.7 billion years old. Whether there is any universe beyond our light horizon, and what it looks like, is something we can only speculate about.

Steady state Until the early 20th century philosophers and scientists thought the universe was fixed, static and stable. Even Einstein put into his theory of relativity a factor he named ‘the cosmological constant’, which wasn’t strictly needed, solely in order to make the universe appear static and so conform to contemporary thinking. The idea of this constant was to counteract the attractive force of gravity, in order to ensure his steady state version of the universe didn’t collapse into a big crunch.

Alexander Friedmann It was a young mathematician, Alexander Friedmann, who looked closely at Einstein’s formulae and showed that the cosmological constant was not necessary, not if the universe was expanding; in this case, no hypothetical repelling force would be needed, just the sheer speed of outward expansion. Einstein eventually conceded that including the constant in the formulae of relativity had been a major mistake.

Edwin Hubble In what Barrow calls ‘the greatest discovery of twentieth century science’, the American astronomer Edwin Hubble in the 1920s discovered that distant galaxies are moving away from us, and the further away they are, the faster they are moving, which became known as Hubble’s Law. He established this by noticing the ‘red-shifting’ of frequencies denoting detectable elements in these galaxies i.e. their light frequencies had been altered downwards, as light (and sound and all waves are) when something is moving away from the observer.

Critical divide An argument against the steady-state theory of the universe is that, over time, the gravity of all the objects in it would pull everything together and it would all collapse into one massive clump. Only an initial throwing out of material could counter-act the affect of all that gravity.

So how fast is the universe expanding? Imagine a rate, x. Below that speed, the effect of gravity will eventually overcome the outward acceleration, the universe will slow down, stop expanding and start to contract. Significantly above this speed, x, and the universe would continue flying apart in all directions so quickly that gas clouds, stars, galaxies and planets would never be formed.

As far as we know, the actual acceleration of the universe hovers just around this rate, x – just fast enough to prevent the universe from collapsing, but not too fast for it to be impossible for matter to form. Just the right speed to create the kind of universe we see around us. The name for this threshold is the critical divide.

Starstuff Stars are condensations of matter large enough to create at their centre nuclear reactions. These reactions burn hydrogen into helium for a long, sedate period, as our sun is doing. At the end of their lives stars undergo a crisis, an explosive period of rapid change during which helium is transformed into carbon nitrogen, oxygen, silicon, phosphorus and many of the other, heavier elements. When the ailing star finally explodes as a supernova these elements disperse into space and ultimately find their way into clouds of gas which condense as planets.

Thus every plant, animal and person alive on earth is made out of chemical elements forged in the unthinkable heat of dying stars – which is what Joni Mitchell meant when she sang, ‘We are stardust’.

Heat death A theory that the universe will continue expanding and matter become so attenuated that there are no heat or dynamic inequalities left to fuel thermal reactions i.e. matter ends up smoothly spread throughout space with no reactions happening anywhere. Thermodynamic equilibrium reached at a universal very low temperature. The idea was formulated by William Thomson, Lord Kelvin, in the 1850s who extrapolated from Victorian knowledge of mechanics and heat. 170 years later, updated versions of heat death remain a viable theory for the very long-term future of the universe.

Steady state The ‘steady state’ theory of the universe was developed by astrophysicists Thomas Gold, Hermann Bondi and Fred Hoyle in 1948. They theorised that. although the universe appeared to be expanding it had always existed, the expansion being caused by a steady rate of creation of new matter. This theory was disproved in the mid-1960s by the confirmation of background radiation

Background radiation theorised In the 1940s George Gamow and assistants Alpher and Herman theorised that, if the universe began in a hot dense state way back, there should be evidence, namely a constant layer of background radiation everywhere which, they calculated, would be 5 degrees above absolute zero.

Background radiation proved In the 1960s researchers at Bell Laboratories, calibrating a sensitive radio antenna, noticed a constant background interference to their efforts which seemed to be coming from every direction of the sky. A team from Princeton interpreted this as the expected background radiation and measured it at 2.5 degrees Kelvin. It is called ‘cosmic microwave background radiation’ and is one of the strong proofs for the Big Bang theory. The uniformity of the background radiation was confirmed by observations from NASA’s Cosmic Background Explorer satellite in the early 1990s.

Empty universe There is very little material in the universe. If all the stars and galaxies in the universe were smoothed out into a sea of atoms, there would only be about one atom per cubic meter of space.

Inflation This is a theory developed in 1979 by theoretical physicist Alan Guth – the idea is that the universe didn’t arise from a singularity which exploded and grew at a steady state but instead, in the first milliseconds, underwent a period of hyper-growth, which then calmed back down to ‘normal’ expansion.

The theory has been elaborated and generated numerous variants but is widely accepted because it explains many aspects of the universe we see today – from its large-scale structure to the way it explains how minute quantum fluctuations in this initial microscopic inflationary region, once magnified to cosmic size, became the seeds for the growth of structure in the Universe.

The inflation is currently thought to have taken place from 10−36 seconds after the conjectured Big Bang singularity to sometime between 10−33 or 10−32 seconds after.

Chaotic inflationary universe Proposed by Soviet physicist Andrei Linde in 1983, this is the idea that multiple distinct sections of the very early universe might have experienced inflation at different rates and so have produced a kind of cluster of universes, like bubbles in a bubble bath, except that these bubbles would have to be at least nine billion light years in size in order to produce stable stars. Possibly the conditions in each of the universes created by chaotic inflation could be quite different.

Eternal inflation A logical extension of chaotic inflation is that you not only have multiple regions which undergo inflation at the same time, but you might have sub-regions which undergo inflation at different times – possibly one after the other, in other words maybe there never was a beginning, but this process of successive creations and hyper-inflations has been going on forever and is still going on but beyond our light horizon (which, as mentioned above, only reaches to about 13.7 billion light years away).

Time Is time a fixed and static quality which creates a kind of theatre, an external frame of reference, in which the events of the universe take place, as in the Newtonian view? Or, as per Einstein, is time itself part of the universe, inseparable from the stuff of the universe and can be bent and distorted by forces in the universe? This is why Einstein used the expression ‘spacetime’?

The quantum universe Right back at the very beginning, at 10−43 seconds, the size of the visible universe was smaller than its quantum wavelength — so its entire contents would have been subject to the uncertainty which is the characteristic of quantum physics.

Time is affected by a quantum view of the big bang because, when the universe was still shrunk to a microscopic size, the quantum uncertainty which applied to it might be interpreted as meaning there was no time. That time only ‘crystallised’ out as a separate ‘dimension’ once the universe had expanded to a size where quantum uncertainty no longer dictated.

Some critics of the big bang theory ask, ‘What was there before the big bang?’ to which exponents conventionally reply that there was no ‘before’. Time as we experience it ceased to exist and became part of the initial hyper-energy field.

This quantum interpretation suggests that there in fact was no ‘big bang’ because there was literally no time when it happened.

Traditional visualisations of the big bang show an inverted cone, at the top is the big universe we live in and as you go back in time it narrows to a point – the starting point. Imagine, instead, something more like a round-bottomed sack: there’s a general expansion upwards and outwards but if you penetrate back to the bottom of the sack there is no ‘start’ point.

This theory was most fully worked out by Stephen Hawking and James Hartle.

The Hartle-Hawking no boundary Hartle and Hawking No-Boundary Proposal

Wormholes The book ends with speculations about the possibility that ‘wormholes’ existed in the first few milliseconds, tubes connecting otherwise distant parts of the exploding ball of universe. I understood the pictures of these but couldn’t understand the problems in the quantum theory of the origin which they set out to solve.

And the final section emphasises that everything cosmologists work on relates to the visible universe. It may be that the special conditions of the visible universe which we know about, are only one set of starting conditions which apply to other areas of the universe beyond our knowledge or to other universes. We will never know.

Thoughts

Barrow is an extremely clear and patient explainer. He avoids formulae. Between his prose and the many illustrations I understood most of what he was trying to say, though a number of concepts eluded me.

But the ultimate thing that comes over is his scepticism. Barrow summarises recent attempts to define laws governing the conditions prevailing at the start of the universe by, briefly describing the theories of James Hartle and Stephen Hawking, Alex Vilenkin, and Roger Penrose. But he does so only to go on to emphasise that they are all ‘highly speculative’. They are ‘ideas for ideas’ (p.135).

By the end of the book you get the idea that a very great deal of cosmology is either speculative, or highly speculative. But then half way through he says it’s a distinguishing characteristic of physicists that they can’t stop tinkering – with data, with theories, with ideas and speculations.

So beyond the facts and then the details of the theories he describes, it is insight into this quality in the discipline itself, this restless exploration of new ideas and speculations relating to some of the hardest-to-think-about areas of human knowledge, which is the final flavour the reader is left with.


Related links

Reviews of other science books

Chemistry

Cosmology

The Environment

Genetics and life

Human evolution

Maths

Particle physics

Psychology

Judgement Under Uncertainty: Heuristics and Biases by Amos Tversky and Daniel Kahneman

This article first appeared in Science, volume 185, in 1974. Tversky and Kahneman had been working for some time on unconscious biases in cognitive thinking and this paper summarises the findings of a number of their experiments. The paper was reprinted as an appendix in Kahneman’s 2011 book, Thinking, Fast and Slow. It is overflowing with ideas and insights about key aspects of how humans think, to be precise:

This article shows that people rely on a limited number of heuristic principles which reduce the complex tasks of assessing probabilities and predicting values to simpler judgmental operations.

The article focuses on three ‘heuristics’ which people use to assess probabilities and predict values and highlights their flaws and limitations. What is a heuristic? An intellectual short cut, a rule of thumb, a quick practical way of solving a problem.

The three heuristics discussed by the article are:

  1. Representativeness
  2. Availability
  3. Adjustment and anchoring

1. Representativeness

People make estimates and judgments of things and other people, based on their similarity to existing stereotypes, to representative types. This is the representativeness heuristic or, as it’s come to be known, the representative bias. In doing, people tend to completely ignore statistical and probabilistic factors which ought, in more rational thinking, to carry more weight.

T&K gave experimental subjects a description of ‘Steve’, describing him as shy and timid, meek and helpful and interested in order. The subjects were then asked to guess Steve’s profession from a list which included librarian and farmer. Most subjects guessed he was a librarian on the basis of his closeness to a pre-existing stereotype. But, given that there are ten times as many farmers in the U.S. as librarians and in the absence of any definitive evidence, in terms of pure probability, subjects should have realised that Steve is much more likely to be a farmer than a librarian.

In making this mistake, the subjects let the representativeness heuristic overshadow considerations of basic probability theory.

Insensitivity to prior probability of outcomes The prior probability or base rate frequency describes the likely occurrence of the event being assessed, the likelihood of an event occurring without any other intervention, its basic probability.

T&K told experimental subjects there were ten people in a room, nine men and one woman. Then T&K told the subjects that one of these ten people is caring and sharing, kind and nurturing, and asked the subjects who the description was of. Without any concrete evidence, the chance of it being the woman is the same as it being any of the men i.e. 1 in 10. But the representativeness heuristic overrode an understanding of base rate probability, and most of the subjects confidently said this description must be of the woman. They were overwhelmingly swayed by the description’s conformity to stereotype.

Insensitivity to sample size People don’t understand the significant difference which sample size makes to any calculation of probability.

Imagine a town has two hospitals, one large, one small. In the large one about 45 babies are born every day, in the small one about 15 babies. Now, the ratio of boys and girl babies born anywhere is usually around 50/50, but on particular days it can vary. Over a year, which hospital do you think had more days on which 60% or more of the babies born were boys?

When students were asked this question, 21 said the large hospital, 21 said the small hospital and 53 said it would be the same at both. The correct answer is the small hospital. Why? Because smaller samples are more likely to be unrepresentative, to have ‘freakish’ aberrations from the norm. T&K conclude that:

This fundamental notion of statistics is evidently not part of people’s repertoire of intuitions.

Imagine an urn filled with balls. Two thirds are one colour, a third are another. A subject draws five balls and finds 4 are red and one is white. Another subject draws 20 balls and finds that 12 are red and 8 are white. Which subject should feel more confident that 2/3 of the balls in the urn are red, and why?

Most people think it’s the first subject who should feel more confident. Four to one feels like – and is – a bigger ratio. Big is good. But they’re wrong. The second subject should feel more confident because, although his ratio is smaller – 4 to 3 – his sample size is larger. The larger the sample size, the closer you are likely to get to an accurate picture.

Misconception of chance Here are three sets of results from tossing a coin six times in a row, where T stands for tails and H stands for heads. Ask a selection of people which of the three sets is the random one.

  1. TTTTTT
  2. TTTHHH
  3. THHTTH

Most people will choose set 3 because it feels random. But, of course, all three are equally likely or unlikely. Tversky and Kahneman speculate that this is because people have in mind a representation of what randomness ought to look like, and let this override their statistical understanding (if they have any) that the total randomness of a system need not be exactly replicated at every level. In other words, a random series of tossing coins might well throw up sequences which appear to have order.

The gambler’s fallacy is the mistaken belief that, if you toss enough coins and get nothing but heads, the probability increases that the next result one will be tails, because you expect the series to ‘correct’ itself.

People who fall for this fallacy are using a representation of fairness (just as in the example above they use a representation of chaos) and letting it override what ought to be a basic knowledge of statistics, which is that each coin toss stands on its own and has its own probability i.e. 50/50 or 0.5. Just because someone tosses an increasing number of heads in a row is no reason at all for believing their next toss will be tails.

(In reality we all know that sooner or later a heads is likely to appear due to the law of large numbers, namely that if you perform probabilistic events enough times the total sum of events is likely to revert to the overall expected average. T&K shed light on the interaction of the gambler’s fallacy and the law of large numbers by clarifying that an unusual run of results is not ‘corrected’ by the coin (which obviously has no memory or intention) – such runs are diluted by a large number of occurrences, they are dissolved in the context of larger and larger samples.)

Insensitivity to predictability Subjects were given descriptions of two companies, one described in glowing terms, one in mediocre terms, and then asked about their future profitability. Although neither description mentioned anything about profitability, most subjects were swayed by the representativeness heuristic to predict that the positively described company would have higher profits.

Two groups of subjects were given descriptions of one practice lesson given by several student teachers. One group was asked to rate the teachers’ performances based on this one class, the other group was asked to predict the relative standing of the teachers five years in the future. The ratings of the groups agreed. Despite the wild improbability of being able to predict anything in five years time from one provisional piece of evidence, the subjects did just that.

The illusion of validity People make judgments or predictions based on the degree of representativeness (the quality of the match between the selected  outcome and the input) with no regard for probability or all the other factors which limit predictability. The illusion of validity is the profound mental conviction engendered when the ‘input information’ approaches representative models (stereotypes). I.e. if it matches a stereotype, people will believe it.

Misconceptions of regression Most people don’t understand a) where ‘regression to the mean’ applies b) recognise it when they see it, preferring to give all sorts of spurious explanations. For example, a sportsman has a great season – the commentators laud him, he wins sportsman of the year – but his next season is lousy. Critics and commentators come up with all kinds of reasons to explain this performance, but the good year might just have been a freak and now he has regressed closer to his average, mean ability.

2. Availability

Broadly speaking, this means going with the first thing that comes to mind. Like the two other heuristics, the availability heuristic has evolved because, in evolutionary terms, it is quick and useful. It does, however, in our complex industrial societies, lead to all kinds of biases and errors.

Biases due to the retrievability of incidences Experimenters read out a list of men and women to two groups without telling them that the list contained exactly 25 men and 25 women, then asked the groups to guess the ratio of the sexes. If the list included some famous men, the group was influenced to think there were more men, if the list included a sprinkling of famous women, the group thought there are more women than men. Why? Because the famous names carry more weight and literally influence people into thinking there are more of them.

Salience Seeing a house on fire makes people think about the danger of burning houses. Driving past a motorway accident makes people stop and think and drive more carefully (for a while). Then it wears off.

Biases due to the availability of a search set Imagine we sample words from a random text. Will there be more words starting with r or with r in the third position? For most people it is easier to call to mind words starting in r, so they think there are more of them, but there aren’t: there are more words in the English language with r in the third position than those with start with r.

Asked to estimate which are more common, abstract words like ‘love’ or concrete words like ‘door’, most subjects guess incorrectly that abstract words are more common. This is because they are more salient – love, fear, hate – and have more power in the mind. Are more available to conscious thought.

Biases of imaginability Say you’ve got a room of ten people. They have got to be formed into ‘committees. How many committees can be created which consist of between 2 and 8 people? Almost all people presented with this problem estimated there were many more possible committees of 2 than of 8, which is incorrect. There are 45 possible ways to create committees of 2 and of 8 (apparently). People prioritised 2 because it was easier to quickly begin working out permutations of 2, and then extrapolate this to the whole sample. This bias is very important when it comes to estimating the risk of any action, since we are programmed to call to mind big, striking, easy-to-imagine risks and often overlook hard-to-imagine risks (which is why risk factors should be written down and worked through as logically as possible).

Illusory correlation Subjects were given written profiles of several hypothetical mental patients along with drawings the patients were supposed to have made. When asked to associate the pictures with the diagnoses, subject came up with all kinds of spurious connections: for example, told that one patient was paranoid and suspicious, many of the subjects read ‘suspiciousness’ into one of the drawings and associated it with that patient, and so on.

But there were no connections. Both profiles and drawings were utterly spurious. But this didn’t stop all the subjects from making complex and plausible networks of connections and correlations.

Psychologists speculate that this tendency to attribute meaning is because we experience some strong correlations, especially early in life, and then project them onto every situation we encounter, regardless of factuality or probability.

It’s worth quoting T&K’s conclusion in full:

Lifelong experience has taught us that, in general, instances of large classes are recalled better and faster than instances of less frequent classes; that likely occurrences are easier to imagine than unlikely ones; and that the associative connections between events are strengthened when the events frequently co-occur. As a result, man has at his disposal a procedure (the availability heuristic) for estimating the numerosity of a class, the likelihood of an event, or the frequency of co-occurrences, by the ease with which the relevant mental operations of retrieval, construction, or association can be performed.

However, as the preceding examples have demonstrated, his valuable estimation procedure results in systematic errors.

3. Adjustment and Anchoring

In making estimates and calculations people tend to start from whatever initial value they have been given. All too often this value is not just wrong, but people are reluctant to move too far away from it. This is the anchor effect.

Insufficient adjustment Groups were given estimating tasks i.e. told to estimate various fairly easy values. Before each guess the group watched the invigilator spin a roulette wheel and pick a number entirely at random. Two groups were asked to estimate the number of African nations in the United Nations. The group which had watched the invigilator spin a roulette number of 10 guessed the number of nations at 25, the group which had watched him land a 65, guessed there were 45 nations.

Two groups of high school students were given these sums to calculate in 5 seconds: first group 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8, second group 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1. Without time to complete the sum both groups extrapolated from the part-completed task: first group guessed 512, second group guessed 2,250. (Both were wrong: it’s 40,320).

Biases in the evaluation of conjunctive and disjunctive events People tend to overestimate the probability of conjunctive events and underestimate the probability of disjunctive events. I found their explanation a little hard to follow here, but it seems to mean that when several events all need to occur in order to result in a certain outcome, we overestimate the likelihood that all of them will happen. If only one of many events needs to occur, we underestimate that probability.

Thus: subjects were asked to take part in the following activities:

  • simple event: pull a red marble from a bag containing half red marbles and half white marbles
  • conjunctive event: pulling a red marble seven times in succession from a bag containing 90% red and 10% whites – the point is, that this is only an event if it happens seven times in succession
  • disjunctive event: pulling a red marble at least once in seven successive goes

So the simple event is a yes-no result, with 50/50 odds; the conjunctive event requires that seven things happen in succession (pretty low odds); and the disjunctive event is a one (or more) in seven chance. Almost everyone overestimated the chances of the seven times in succession event compared to the at-least-one-in-seven outcome.

They then explain the real world significance of this finding. The development of a new product is a typically conjunctive event: a whole string of things must go right in order for the product to work. People’s tendency to overestimate conjunctive events leads to unwarranted optimism, which sometimes results in failure.

By contrast disjunctive structures are typically used in the calculation of risk. In a complex system, just one thing has to fail for the whole to fail. The chances of failure in each individual component might be low, but adding together the chances results in a high probability that something will go wrong, somewhere.

Yet people consistently underestimate the probability of disjunctive events, thus underestimating risk.

This explains why estimates for the completion of big, complex projects always tend to be over-optimistic – think Crossrail.

Anchoring in the assessment of subjective probability distributions This is an advanced statistical concept which they did not explain very well. I think it was to do with how you set a kind of basic value for a person’s guesses and estimates, and T&K then proceed to show that these kinds of calibrations are often wildly inaccurate.

Discussion

At the end of the summary of experiments, Tversky and Kahneman discuss their findings. This part was tricky to follow because they don’t discuss their findings’ impact on ordinary life, in terms you or I might understand, but instead assess the impact of their findings on what appears to have been (back in 1974) modern decision theory.

think the idea is that modern decision theory was based on a modern of human rationality which was itself based on an idealised notion of logical thinking calculated from an assessment or ‘calibration’ of subjective decision-making.

Modern decision theory regards subjective probability as the quantified opinion of an ideal person.

I found it impossible to grasp the detail of this idea, maybe because they don’t explain it very well, assuming that the audience for this kind of specialised research paper would be totally au fait with it. Anyway, Tversky and Kahneman say that their findings undermine the coherence of this model of ‘modern decision theory’, explaining why in technical detail which, again, I found hard to follow.

Obviously, for the lay reader like myself, the examples they’ve assembled, and the types of cognitive and logical and probabilistic errors they describe, give precision and detail enough to support one’s intuition that people (including oneself) are profoundly, alarmingly, irrational.

Summary

In their words:

This article described three heuristics that are employed in making judgements under uncertainty: (i) representativeness, which is usually employed when people are asked to judge the probability that an object or event A belongs to class or process B; (ii) availability of instances or scenarios, which is often employed when people are asked to assess the frequency of a class or the plausibility of a particular development; and (iii) adjustment from an anchor, which is usually employed in numerical prediction when a relevant value is available.

These heuristics are highly economical and usually effective, but they lead to systematic and predictable errors. A better understanding of these heuristics and of the biases to which they lead could improve judgments and decisions in situations of uncertainty.

My thoughts

1. The most obvious thing to me, fresh from reading John Allen Paulos’s two books about innumeracy and Stuart Sutherland’s book on irrationality, is how much the examples used by Tversky and Kahneman are repeated almost verbatim in those books, and thus what a rich source of data this article was for later writers.

2. The next thought is that this is because those books, especially the Sutherland, copy the way that Tversky and Kahneman use each heuristic as the basis for a section of their text, which they then sub-divide down into component parts, or variations on the basic idea.

Reading this paper made me realise this is exactly the approach that Sutherland uses in his book, taking one ‘error’ or bias at a time, and then working through all the sub-types and examples.

3. My next thought is the way Sutherland and Paulos only use some of the examples in this paper, the ones – reasonably enough – which are most comprehensible. Thus the final section in Tversky and Kahneman’s paper – about subjective probability distributions – is not picked up in the other books because it is couched in such dense mathematical terminology as to be almost impenetrable and because the idea they are critiquing – 1970s decision making theory – is too remote from most people’s everyday concerns.

So: having already read Paulos and Sutherland, not many of the examples Tversky and Kahneman use came as a surprise, nor did the basic idea of the availability error or representative error or the anchor effect.

But what did come over as new – what I found thought provoking – was the emphasis they put throughout on the fundamental usefulness of the heuristics.

Up till now – in Paulos and Sutherland – I had only heard negative things about these cognitive errors and prejudices and biases. It was a new experience to read Tversky and Kahneman explaining that these heuristics – these mental shortcuts – although they are often prone to error – nonetheless, have evolved deep in our minds because they are fundamentally useful.

That set off a new train of thought, and made me reflect that Paulos, Sutherland and Tversky and Kahneman are all dwelling on the drawbacks and limitations of these heuristics, leaving the many situations in which they are helpful, undescribed.

Now, as Sutherland repeats again and again – we should never let ourselves be dazzled by salient and striking results (such as coincidences and extreme results), we should always look at the full set of all the data, we should make sure we consider all the negative incidents where nothing dramatic or interesting happened, in order to make a correct calculation of probabilities.

So it struck me that you could argue that all these books and articles which focus on cognitive errors are, in their own way, rather unscientific, or lack a proper sample size – because they only focus on the times when the heuristics result in errors (and, also, that these errors are themselves measured in highly unrealistic conditions, in psychology labs, using highly unrepresentative samples of university students).

What I’m saying is that for a proper assessment of the real place of these heuristics in actual life, you would have to take into account all the numberless times when they have worked – when these short-cut, rule-of-thumb guesstimates, actually produce positive and beneficial results.

It may be that for every time a psychology professor conducts a highly restricted and unrealistic psychology experiment on high school students or undergraduates which results in them making howling errors in probability or misunderstanding the law of large numbers or whatever —  it may just be that on that day literally billions of ‘ordinary’ people are using the same heuristic in the kind of real world situations most of us encounter in our day-to-day lives, to make the right decisions for us, and to achieve positive outcomes.

The drawbacks of these heuristics are front-centre of Paulos and Sutherland and Tversky and Kahneman’s works – but who’s measuring the advantages?


Related link

Reviews of other science books

Chemistry

Cosmology

The Environment

Genetics and life

Human evolution

Maths

Particle physics

Psychology

Nature’s Numbers by Ian Stewart (1995)

Stewart is a mathematician and prolific author, having written over 40 books on all aspects of maths, as well as publishing several guides to the maths used in Terry Pratchett’s Discworld books, authoring half a dozen textbooks for students, and co-authoring a couple of science fiction novels.

He writes in a marvellously clear style but, more importantly, he is interesting: he sees the world in an interesting way, in a mathematical way, and manages to convey the wonder and strangeness and powerful insights which seeing the world in terms of patterns and shapes, numbers and maths, gives you.

He wants to help us see the world as a mathematician sees it, full of clues and information which can lead us to deeper and deeper appreciation of the patterns and harmonies all around us. This is a wonderfully illuminating read.

1. The Natural Order

Thus Stewart begins the book by describing just some of nature’s multitude of patterns: the regular movements of the stars in the night sky; the sixfold symmetry of snowflakes; the stripes of tigers and zebras; the recurring patterns of sand dunes; rainbows; the spiral of a snail’s shell; why nearly all flowers have petals arranged in one of the following numbers 5, 8, 13, 21, 34, 55, 89; the regular patterns or ‘rhythms’ made by animals scuttling, walking, flying and swimming.

2. What Mathematics is For

Mathematics is brilliant at helping us to solve puzzles. It is a more or less systematic way of digging out the rules and structures that lie behind some observed pattern or regularity, and then using those rules and structures to explain what’s going on. (p.16)

Stewart trots through the history of major mathematical discoveries: Kepler discovers that the planets move not in circles but in ellipses. That the nature of acceleration is ‘not a fundamental quality, but a rate of change’. Then Newton and Leibniz invent calculus to help us work out rates of change.

Two of the main things that maths are for are 1. providing the tools which let scientists understand what nature is doing 2. providing new theoretical questions for mathematicians to explore further. These are, respectively, applied and pure mathematics.

Stewart mentions one of the oddities, paradoxes or thought-provoking things that comes up in many science books, which is the eerie way that good mathematics, mathematics well done, whatever its source and no matter how abstract its origin, eventually turns out to be useful, to be applicable to the real world, to explain some aspect of nature.

Many philosophers have wondered why. Is there a deep congruence between the human mind and the structure of the universe? Did God make the universe mathematically and implant an understanding of maths in us? Is the universe made of maths?

Stewart’s answer is simple and elegant: he thinks that nature exploits every pattern that there is, which is why we keep discovering patterns everywhere. We humans express these patterns in numbers, but nature doesn’t use numbers as such – she uses the patterns and shapes and possibilities which the numbers express, or define.

Mendel noticing the numerical relationships with which characteristics of peas are expressed when they are crossbred. The double helix structure of DNA. The computer simulation of the evolution of the eye from an initial mutation providing for skin cells sensitive to light, published by Daniel Nilsson and Susanne Pelger in 1994. Pattern appears wherever we look.

Resonance = the relationship between periodically moving bodies in which their cycles lock together so that they take up the same relative positions at regular intervals. The cycle time is the period of the system. The individual bodies have different periods. The moon’s rotational period is the same as its revolution around the earth, so there is a 1:1 resonance of its orbital and rotational period.

Mathematics doesn’t just analyse, it can predict, predict how all kinds of systems will work, from the aerodynamics which keep planes flying, to the amount of fertiliser required to increase crop yield, to the complicated calculations which keep communications satellites in orbit round the earth and therefore sustain the internet and mobile phone networks.

Time lags The gap between a new mathematical idea being developed and its practical implementation can be a century or more: it was 17th century interest in the vibration of a violin string which led, three hundred years later, to the invention of radio, radar and TV.

3. What Mathematics is About

The word ‘number’ does not have any immutable, God-given meaning. (p.42)

Numbers are the most prominent part of mathematics and everyone is taught arithmetic at school, but numbers are just one type of object that mathematics is interested in.

The invention of numbers. Fractions. Some time in the Dark Ages the invention of 0. The invention of negative numbers, then of square roots. Irrational numbers. ‘Real’ numbers.

Whole numbers 1, 2, 3… are known as the natural numbers. If you include negative whole numbers, the series is known as integers. Positive and negative numbers taken together are known as rational numbers. Then there are real numbers and complex numbers. Five systems in total.

But maths is also about operations such as addition, subtraction, multiplication and division. And functions, also known as transformations, rules for transforming one mathematical object into another. Many of these processes can be thought of as things which help to create data structures.

Maths is like a landscape with similar proofs and theories clustered together to create peaks and troughs.

4. The Constants of Change

Newton’s basic insight was that changes in nature can be described by mathematical processes. Stewart explains how detailed consideration of what happens to a cannonball fired out of a cannon helps us towards Newton’s fundamental law, that force = mass x acceleration.

Newton invented calculus to help work out solutions to moving bodies. Its two basic operations – integration and differentiation – mean that, given one element – force, mass or acceleration – you can work out the other two. Differentiation is the technique for finding rates of change; integration is the technique for ‘undoing’ the effect of differentiation to isolate out the initial variables.

Calculating rates of change is a crucial aspect of maths, engineering, cosmology and many other areas of science.

5. From Violins to Videos

A fascinating historical recap of how initial investigations into the way a violin string vibrates gave rise to formulae and equations which turned out to be useful in mapping electricity and magnetism, which turned out to be aspects of the same fundamental force, the understanding of which underpinned the invention of radio, radar, TV etc – taking in descriptions of the contributions from Michael Faraday, James Clerk Maxwell, Heinrich Hertz and Guglielmo Marconi.

Stewart makes the point that mathematical theory tends to start with the simple and immediate and grow ever-more complicated. This is because of a basic principle, which is that you have to start somewhere.

6. Broken Symmetry

A symmetry of an object or system is any transformation that leaves it invariant. (p.87)

There are many types of symmetry. The most important ones are reflections, rotations and translations.

7. The Rhythm of Life

The nature of oscillation and Hopf bifurcation (if a simplified system wobbles, then so must the complex system it is derived from) leads into a discussion of how animals – specifically animals with legs – move, which is by staggered or syncopated oscillations, oscillations of muscles triggered by neural circuits in the brain.

This is a subject Stewart has written about elsewhere and is something of an expert on. The seven types of quadrupedal gait are: the trot, pace, bound, walk, rotary gallop, transverse gallop, and canter.

8. Do Dice Play God?

Stewart’s take on chaos theory.

Chaotic behaviour obeys deterministic laws, but is so irregular that to the untrained eye it looks pretty much random. Chaos is not complicated, patternless behaviour; it is much more subtle. Chaos is apparently complicated, apparently patternless behaviour that actually has a simple, deterministic explanation. (p.130)

19th century scientists thought that, if you knew the starting conditions, and then the rules governing any system, you could completely predict the outcomes. In the 1970s and 80s it became increasingly clear that this was wrong. It is impossible because you can never define the starting conditions with complete certainty.

Thus all real world behaviours are subject to ‘sensitivity to initial conditions’. From minuscule divergences at the starting point, cataclysmic differences may eventually emerge.

Stewart goes on to explain the concept of ‘phase space’ developed by Henri Poincaré: this is an imaginary mathematical space that represents all possible motions in a given dynamic system. The phase space is the 3-D place in which you plot the behaviour in order to create the phase portrait. Instead of having to define a formula and worrying about identifying every number of the behaviour, the general shape can be determined.

Much use of phase portraits has shown that dynamic systems tend to have set shapes which emerge and which systems move towards. These are called attractors.

9. Drops, Dynamics and Daisies

The book ends by drawing a kind of philosophical conclusion.

Chaos theory has all sorts of implications but the one Stewart closes on is this: the world is not chaotic; if anything, it is boringly predictable. And at the level of basic physics and maths, the laws which seem to underpin it are also schematic and simple. And yet, what we are only really beginning to appreciate is how complicated things are in the middle.

It is as if nature can only get from simple laws (like Newton’s incredibly simple law of thermodynamics) to fairly simple outcomes (the orbit of the planets) via almost incomprehensibly complex processes.

To end, Stewart gives us three examples of the way apparently ‘simple’ phenomena in nature derive from stupefying complexity:

  • what exactly happens when a drop of water falls off a tap
  • computer modelling of the growth of fox and rabbit populations
  • why petals on flowers are arranged in numbers derived from the Fibonacci sequence

In all three cases the underlying principles seem to be resolvable into easily stated laws and functions – and we see water dropping off taps or flowerheads all the time – and yet the intermediate steps between principle and real world embodiment, are mind-bogglingly complex.

Coda: Morphomatics

He ends the book with an epilogue speculating, hoping and wishing for a new kind of mathematics which incorporates chaos theory and the other elements he’s discussed – a theory and study of form, which takes everything we already know about mathematics and seeks to work out how the almost incomprehensible complexity we are discovering in nature gives rise to all the ‘simple’ patterns which we see around us. He calls it morphomatics.


Related links

Reviews of other science books

Chemistry

Cosmology

The Environment

Genetics and life

Human evolution

Maths

Particle physics

Psychology

The Black Cloud by Fred Hoyle (1957)

‘Nice place you’ve got here. Have some tea?’
‘Thanks, it’s very kind of you.’
‘Not at all.’ (p.95)

If Pierre Boulle’s Monkey Planet is a kind of Swiftian satire which glossed over the practical aspects of space travel in order to concentrate on making its moralising points, The Black Cloud is the exact opposite, a showcase of Anglo-Saxon pragmatism and factual accuracy.

It is set slightly into what was then the future, the narrative opening in January 1964. The blurb on the back has already told you that it’s about a black cloud which enters the solar system heading towards the Earth, so there’s no surprise about the central fact of the story, but any suspense about whether this is going to be an apocalyptic, end-of-the-world shocker is killed stone dead by the first few words of the prologue. This is set fifty years in the future (2020) and immediately establishes the jocular tone and worldview.

It is a humorous letter from a chap at a jolly nice Cambridge college, Dr John McPhail, and he describes the advent of the black cloud as ‘an interesting episode’, so jolly interesting that it was the subject of the thesis which won him his fellowship at Queen’s College, Cambridge. Good show.

So – we realise immediately – the world is not going to end, and also we are going to be dealing with jolly decent chaps from Cambridge and the Royal Astronomical Society. Thus deprived of key elemens of suspense, the interest in this early part of the text derives from:

  • a highly accurate description of the state of astronomical knowledge circa 1957, along with the technology they used then (the different types of telescope, techniques for comparing prints of photos taken of deep space, a long description of punching the tape required in a very early computer)
  • some very detailed calculations about the probable velocity, density and direction of the cloud which the characters do on blackboards as they discuss it, and which are reproduced in the book (you don’t often see extensive mathematical formulae in a novel)
  • some of the terminology and phraseology: I was particularly struck by the way that the word lab, being a contraction of laboratory, is printed as ‘lab.’ throughout

Introduction to the star character, Professor Christopher Kingsley

So a group of astronomers in America notice that something is progressively blotting out stars in a particular part of the sky, while at the same time an amateur astronomer tips off the British Royal Astronomical Society that the orbits of the larger planets in the solar system seem to have shifted. Sceptical experts redo the observations and conclude that something massive is causing them to wobble.

At the meeting where these figures are first discussed we are introduced to the irascible figure of the Cambridge-based theoretical astronomer, Professor Christopher Kingsley, age 37, tall with thick dark hair and ‘astonishing blue eyes’, a man apart, who follows arguments to their logical conclusion no matter how unpopular, who gets cross with anyone slower on the uptake, and manages to be both highly intelligent and a figure of fun to his colleagues – and is without doubt the central character in the book.

All these chaps analyse the findings, draw formulae on blackboards, puff on their pipes and conclude that a cloud of unknown gas is going to engulf the Sun and Earth in about 17 months time. They estimate it will take about a month to transit past, during which time, if it blots out the heat from the sun, most animals on earth will die, along with most humans. Seeds in the soil should survive so the planet’s flora will kick off after the cloud has left.

As in Arthur C. Clarke, the pleasure comes from the scientific accuracy of the speculation at each stage of the narrative i.e. we eavesdrop while the American and British scientists discuss and interpret each new set of data and information as it comes in and then discuss the possible consequences. So one of the pleasures of the book is enjoying the temporary illusion that you are as clever as these top astronomers.

In these early pages Hoyle paints a stark contrast between the cultures of Britain and America. In Britain the astronomer royal visits Cambridge, where it is cold and damp and foggy and depressing – although the college fellows treat themselves to four-course dinners, and then sit by roaring fires drinking vintage wine.

By contrast, when Kingsley flies over to California to meet the astronomers there, he is hosted by astronomer Geoff Marlowe, who takes him for a drive out into the Mojave desert, then to a restaurant where they speculate about the forthcoming world-changing event – then onto a party at a rich property developer’s house, whence Kingsley goes on to a smaller, more intimate party where he tries to dance with a sexy broad, disapproves of American bourbon, doesn’t like the raucous music on the gramophone and generally comes over as an uptight limey. A dark-haired lady offers him a lift back to his hotel, but they go via her apartment where, since she’s forgotten her keys, he helps her break in, and he ends up spending the night

the contrast between big, rich, scenic, partyful and sexually promiscuous America, and cold, foggy, damp, austerity England where there don’t even appear to be any women, let alone loose women, couldn’t be more striking.

The scientists make a base in the Cotswolds

The book is full of what, to the modern reader, seem like all sorts of oddities and eccentricities. The American and British astronomers, over the course of a series of meetings, become convinced that an enormous cloud of gas is heading directly for the sun, though whether it is cold or hot, full of electrical or radioactive activity, or inert, they cannot say. If it’s hot it might boil the earth’s atmosphere way, killing all life. Even if it’s inert it will probably block the light from the sun, as described above, killing nearly all terrestrial life.

There are at least two oddities: one is the way they sit around in their Cambridge rooms, puffing their pipes and offering each other tea and biscuits while they speculate about the likely impact. The other is that both teams decide to conceal the fact from their respective governments. They think politicians will only interfere and cause panic.

In the event news does leak out to the civil service and the Home Secretary comes to meet Kingsley, who, deploying his ‘easy-going, insulting manner’ (p.128) is immensely rude and confrontational, telling him quite openly that he despises politicians and civil servants. We are then party to the Home Secretary reporting back to the Prime Minister and so on. It seems inconceivable that one man’s personal arrogance (Kingsley’s) can influence so much.

In the event a secretary to the PM, Francis Parkinson, comes up with the suggestion that the scientists be given their own research base to study the cloud, and Whitehall settles on the manor of Nortonstowe in the Cotswolds, a nice country mansion which the Ministry of Agriculture had just finished converting into a research centre for agriculture. It is co-opted for the astronomers. Kingsley is their undoubted leader and makes all kinds of demands as rudely as he can of the politicians.

The place us surrounded by military police, and servants rustled up from the nearby new housing estate, while Kingsley rounds up the best minds available and hounds the ministry into installing state of the art telescopes, photography equipment and so on (no computers). Kingsley makes the inexplicable demand that anybody who comes to Nortonstowe will not be allowed to leave. Thus the Whitehall aide, Parkinson, is inveigled into being stuck there, but Kingsley then pulls a deceitful trick by inviting a string quartet he knows from Cambridge to come and perform and, only on the morning after the performance, happening to tell them that, now they’re here, they won’t be able to leave.

Kingsley behaves like a cross between a dictator and a spoilt child and everyone has to put up with it because Hoyle makes him the great genius who knows or calculates or spots or thinks things through far faster than anyone else. The core of the novel is the dynamic between Kingsley and the small court of scientists he has assembled, including:

  • Geoff Marlowe the American
  • British astronomers Dave Weichart and John Marlborough
  • technicians Roger Emerson and Bill Barnett and Yvette Hedelfort
  • the woman leader of the string quartet Ann Halsey (who seems to spend her time making endless pots of coffee for the Big Brains around her and is on the receiving end of some breath-takingly sexist put-downs from Kingsley)
  • Knut Jensen from Norway via the States
  • Harry Leicester from the University of Sydney
  • John McNeil, a young physician, who ends up writing the prologue and epilogue to the narrative
  • and a Russian physicist who happened to be visiting Britain, Alexis Alexandrov, and soon becomes a comic figure because of his habit of speaking in extremely brief, pithy sentences, for example: ‘Gulf Stream goes, gets bloody cold’

Global devastation

Finally the cloud arrives and it is almost as an afterthought to the absorbing conversations between chaps puffing on their pipes and scribbling on blackboards, that Hoyle casually mentions the devastating impact it has on the rest of the human race. They thought the cloud would block the sun and cause a big freeze. They hadn’t anticipated that it would reflect the heat of the sun with increased force. Thus the world experiences unprecedented heatwaves.

Conditions were utterly desperate throughout the tropics as may be judged from the fact that 7,943 species of plants and animals became totally extinct. The survival of Man himself was only possible because of the caves and cellars he was able to dig. Nothing could be done to mitigate the stifling air temperature. The number who perished during this phase is unknown. It can only be said that during all phases together more than seven hundred million persons are known to have lost their lives. (p.120)

The really odd thing about the book, its most striking characteristic, is how the chaps at Nortonstowe carry on discussing theoretical physics and puffing on their pipes through it all. The vast rise in humidity led to atmospheric instability which led to an epidemic of wildly destructive hurricanes around the world. In fact the manor house at Nortonstowe is itself destroyed in one of these hurricanes and one of the astronomers, Jensen, killed.

All this was caused by heat reflected from the cloud. When the cloud itself begins to arrive and blot out the sun’s light and heat temperatures plummet. As Hoyle briskly summarises it:

Except in the heavily industrialised countries, vast legions of people lost their lives during this period. For weeks they had been exposed to well-nigh unbearable heat. Then many had died by flood and storm. With the coming of intense cold, pneumonia became fiercely lethal. Between the beginning of August and the first week of October roughly a quarter of the world’s population died. (p.127)

The scientists notice something strange and ominous. The cloud is slowing down. There is a great deal of scientific speculation about how it could do this which settles on the idea that it is sending out great pellets of ice which are acting like rockets to slow its velocity. Most vivid proof is when one of these enormous ice pellets hits the surface of the moon causing a massive spurt of moon dust which can be observed through earth telescopes. The cloud is slowing down and looks like stopping.

The Prime Minister pays a visit to what’s left of Nortonstowe (where things appear to be carrying on in the same civilised way, with tea and biscuits, despite the house itself having been wrecked) and tells Kingsley he’s pretty cross with the scientists. They said it would only occlude the sun for a month. It’s been there longer. Kingsley gets cross and says that’s because they have no idea what’s going on. Scientists aren’t gods, their knowledge is limited to what is known by observation, the cloud is a completely new phenomenon.

The cloud now does something else unexpected – it changes shape. It slowly changes from being a big amorphous cloud into the shape of a disk. This has the effect of allowing the earth to leave its shadow and emerge back into sunlight. Slowly humanity climbs out of its frozen caves to try and rebuild amid the ruins.

From a pure science point of view what sustains the book is that each stage of the cloud’s progress – from initial sighting through to enveloping the earth – the chorus of scientists Kingsley has assembled at Nortonstowe give voice to every possible interpretation of scientific possibilities. From one perspective the book is like a sequence of seminars on the successive stages of approach and envelopment by a gas cloud, which, altogether, cover a huge range of geographical and terrestrial phenomenon – the scientists discuss the possibility of global warming, global cooling, a new ice age, the atmosphere being heated until it boils, the entire atmosphere being torn away from the earth leaving it barren as the moon, the atmosphere freezing, and so on.

With the cloud now having completely halted and assumed a disc-like shape, and the earth having orbited out of its shadow, the astronomers have to tell the Prime Minister that it might become a new element of life on earth, that twice a year, in February and August, the earth will travel into the cloud and, for a few weeks, lose sun, warmth, life everything. It will be a completely new global condition.

Radio communication

There then follows a lengthy chapter which appears to be going off on a tangent. In preparation for the cloud arriving Kingsley had had the bright idea of installing not just telescopes and so on at Nortonstowe, but an array of the very latest radio equipment. This is because, in the coming disasters, he foresees that a centre of global information will be required. This chapter set out in minute detail the experiments with different wavelengths required to escape the interference caused by the cloud’s upsetting of the atmosphere. But during their experiments a pattern emerges: put simply, every time they change the wavelength, there is ionisation activity at the edge of the earth’s atmosphere which acts to neutralise it.

Kingsley astonishes the chaps by drawing a mad but logical conclusion: the cloud is blocking their radio transmissions; and if it is doing this no matter what wavelength they use, it must contain intelligent life.

Life in the cloud

Then there’s an interesting chapter devoted to the chaps arguing about how the cloud could possibly contain intelligent life and what form it could possibly take. Although Sir Fred Hoyle was the man who coined the expression Big Bang, he did it critically because he himself didn’t believe in the Big Bang theory i.e. that the universe had a definite beginning. Hoyle believed in the Steady State theory i.e. the universe has no beginning and will have no end. This chapter dramatises his theories of how intelligent life might have begun in vast gaseous clouds as electrical activity among groups of crystal molecules which formed on the surface of ice particles.

As routinely, throughout the book, the fact that half the earth’s population has just died, that agriculture and the environment have been devastated, economies ruined, ecosystems destroyed, are all completely ignored while a bunch of chaps sit around having a jolly interesting chat about the possibility of extra-terrestrial life.

Talking to the cloud

They make the decision to send regular pulses into the cloud as signs of intelligent communication. To cut a long story short, the cloud replies and within just a few days they are talking to the cloud. One of the technical johnnies rigs up a system whereby the electronic pulses the cloud sends back can be translated into words via one of those new-fangled televisions and, bingo! They can hear the cloud talk! And he speaks in exactly the tone of a jolly interesting Cambridge academic! This is the first message they hear from the cloud:

Your first transmission came as a surprise, for it is most unusual to find animals with technical skills inhabiting planets, which are in the nature of extreme outposts of life. (p.170)

One of the workers from the housing estate who had tended the gardens and tried to supply the scientists with fruit and veg through all the disasters, was a simple-minded gardener named Joe Stoddard. The technical johnny who rigs up the signals from the Cloud to come through a loudspeaker has, for a joke, used the voice pattern of Joe Stoddard. In other words, mankind’s first communications with the first intelligent extra-terrestrial life it’s encountered are translated into the phraseology of a Cambridge Common Room as expressed through the speech of a Gloucestershire peasant.As a result the scientists unanimously nickname the Cloud, ‘Joe’. Joe says this, Joe says that.

Joe proceeds to tell them all about himself. The universe is eternal and Joe thinks he has existed for some five hundred million years (p.178). He creates units of replicating life and seeds other clouds as he passes. Thus life is spread throughout the universe. He explains that intelligent life on planets is very rare for a multitude of reasons, for example the difficulty o gaining energy from surroundings by processing vegetable matter, and the thickness of skulls required to protect the brain militates against the brain growing in size. Plus the requirement of converting the intangible process of ‘thought’ – in reality a blizzard of electrical signals throughout the brain – into ‘speech’ i.e. the mechanical operation of jaw, lungs, vocal chords etc – a very primitive way to communicate.

This is fascinating and thought-provoking.

The hydrogen bombs

Back in the plot, word gets out to the politicians who are still running the governments of Britain, America and so on, that communication has been established with the Cloud. The governments insist on listening in on a ‘conversation’. This particular conversation is about human reproduction – sex – and its irrationality; it has to be irrational (love, lust) in order to overcome its very obvious pains and risks. The cloud opines that this may be why intelligent life on planets is so rare: the effort required for planet-borne life forms to communicate and to reproduce both tend to emphasise the irrational. Joe thinks the chances are humanity will over-populate the Earth and kill itself off.

After the ‘conversation’ is terminated, the conversation among the scientists continues with a few choice criticisms of politicians everywhere. Then one of the technicians points out that the politicians are still on the line. They have heard the scientists, particularly Kingsley, being as rude and dismissive of political interference as imaginable.

They then get a call from the American secretary of Defence to whom Kingsley is immensely rude and confrontational. When the Secretary threatens Kingsley, Kingsley foolishly replies that he can, with a few suggestions to Joe the Cloud, annihilate America if he wants to.

This seems tactless and rash even for Kingsley and the consequences are bad. As so often happens in 1950s Cold War sci-fi, the American and Russian governments decide the Cloud is a threat to their existence and launch missiles carrying hydrogen bombs at it.

The Nortonstowe scientists learn of this and warn the Cloud who is extremely cross, peeved wouldn’t be too strong a word. Kingsley explains that Earth is ruled by a variety of autonomous governments and that this decision has nothing to do with him or the other scientists. The Cloud announces he will simply return the missiles to their places of origin – with the result that El Paso and Chicago are wiped off the map, along with Kiev. About half a million people are vaporised.

In this, as in the reports of worldwide devastation, the really interesting thing is how offhand and disinterested Hoyle is about these, the melodramatic elements, of his story. Hundreds of millions die, hurricanes destroy the environment, H-bombs destroy American cities… but this is always forgotten whenever the chaps at Nortonstowe make a new discovery about the Cloud.

(And I never understood how Hoyle reconciles the fact that the entire manor house at Nortonstowe is destroyed in a hurricane with the fact that all the scientists carry on meeting in oak-panelled rooms, pouring each other cups of tea, puffing their pipes and discussing the various fascinating problems thrown up by the cloud. Where does all this happen? In a cave?)

The cloud departs

Then Joe the Cloud tells them that another cloud in the vicinity (i.e. hundreds of millions of miles away) has suddenly gone quiet. Joe tells us that this sometimes happens, none of the clouds know why. The clouds themselves are not omniscient. There are many aspects of the universe which are mysteries to them.

In the last few days before the cloud departs, our chaps ask it to tell them more about its vast knowledge. This is a once-in-a-lifetime chance.

‘Now, chaps, this is probably one of our last chances to ask questions. Suppose we make a list of them. Any suggestions?’ (p.204)

Weichart volunteers to sit in front of a series of TV monitors hooked up by Leicester, the TV man, to the Cloud’s wavelength. The transmission begins and vast amounts of information leap across the screens. Slowly Weichart goes into a trance or hypnotised state. His temperature rises, he becomes delirious, he has to be dragged away from the screens to a bed, where he dies.

Then Kingsley announces he will do the same only they’ll ask the Cloud to transmit at a greatly reduced pace. Caring Ann tries to get the other scientists to persuade Kingsley not to do it. Obstinately he insists. He too sits in front of the monitors, his brain is bombarded, he goes into a fugue state, has to be dragged away and sedated. When the sedation wears off he looks deranged and then starts screaming. More sedatives. He dies of brain inflammation. The cloud simply knows too much for a human brain to process, although a couple of the scientists speculate that there might be a subtler reason: it could be that the Cloud not only overloaded his primitive brain with information but that what he learned was so at odds with human understanding, so completely contrary to all the scientific theories which Kingsley had devoted his life to, that he went mad.

Epilogue

A short epilogue explains the end of the affair. It is written by John McNeil fifty years later. He had been co-opted to Nortonstowe as a young physician and was an eye witness to all the key events and discussions. It was he who treated and failed to save Kingsley.

He now explains that the fact that the Cloud was intelligent and the entire course of all its discussions with humans, as well as the fact that it decided to move on out of the solar system, were kept hidden from the public, from the world. A handful of politicians and the tiny cohort in the Cotswolds knew but both decided to keep it secret, for their various reasons.

This text is therefore in the nature of being a bombshell for the human race.

Only now, fifty years later, is he revealing all in this long narrative, addressed to a young colleague of his Blythe. Why Blythe? Well, he’s a fellow academic, but another reason is that he is the grandson of Ann Halsey, the classical musician trapped at Nortonstowe and who – from a few dropped hints – we suspect had an affair with Kingsley while they were confined to the Cotswold mansion. So Blythe is Kinbgsley’s grandson as well (I think).

Now McNeil is leaving Blythe the full narrative of events and leaving it up to him whether to make the whole thing public. He also bequeaths him a copy of the punched card ‘code’ which Kingsley et al used to communicated with the Cloud. What he does with it now is up to him.

Comments

The science is fascinating, and takes on a whole new twist once we realise the cloud is intelligent. But from start to finish what should be appalling, epic events – unprecedented heat wave, blotting out of the sun and unprecedented freeze, death of quarter of the world’s population etc – take a firm back seat to detailed accounts of the conversations between the various chaps, led by the grotesque Kingsley – and these conversations are of such a 1950s, man-from-the-ministry, ornate style that it is really most frightfully difficult to work up the sense of awe or horror a science fiction novel should strive for. Instead one finds oneself more distracted by the Oxbridge and Whitehall Mandarin style of the dialogue than by the epoch-making events the book describes.

This is from the long conversation between secretary to the Prime Minister Parkinson and Sir Charles Kingsley at the latter’s rooms in his Cambridge college. We know they’re getting on because Kingsley offers Parkinson a second cup of tea, puts more logs on the fire, and then makes his demands of the British government thus:

‘I want everything quite clear-cut. First, that I be empowered to recruit the staff to this Nortonstowe place, that I be empowered to offer what salaries I think reasonable, and to use any argument that may seem appropriate other than divulging the real state of things. Second, that there shall be, repeat no, civil servants at Nortonstowe, and that there shall be no political liaison except through yourself.’
‘To what do I owe this exceptional distinction?’
‘To the fact that, although we think differently and serve different masters, we do have sufficient common ground to be able to talk together. This is a rarity not likely to be repeated.’
‘I am indeed flattered.’
‘You mistake me then. I am being as serious as I know how to be. I tell you most solemnly that if I and my gang find any gentlemen of the proscribed variety at Nortonstowe we shall quite literally throw them out of the place. if this is prevented by police action or if the proscribed variety are so dense on the ground that we cannot throw them out, then I warn you with equal solemnity that you will not get one single groat of co-operation from us. If you think I am overstressing this point, then I would say that I am only doing so because I know how extremely foolish politicians can be.’
‘Thank you.’
‘Not at all.’ (pp.83-84)

It’s a little like the end of the world as Ealing Comedy.

‘Would you like to talk to the first intelligent life from outer space that humanity has ever encountered, Charles?’
‘Oh, that’s frightfully kind of you, Algernon, but I was going to make a fresh pot of tea. Why don’t you take first dibs?’
‘Well, that’s jolly decent of you, old chap. Two lumps for me.’


Related links

Other science fiction reviews

1888 Looking Backward 2000-1887 by Edward Bellamy – Julian West wakes up in the year 2000 to discover a peaceful revolution has ushered in a society of state planning, equality and contentment
1890 News from Nowhere by William Morris – waking from a long sleep, William Guest is shown round a London transformed into villages of contented craftsmen

1895 The Time Machine by H.G. Wells – the unnamed inventor and time traveller tells his dinner party guests the story of his adventure among the Eloi and the Morlocks in the year 802,701
1896 The Island of Doctor Moreau by H.G. Wells – Edward Prendick is stranded on a remote island where he discovers the ‘owner’, Dr Gustave Moreau, is experimentally creating human-animal hybrids
1897 The Invisible Man by H.G. Wells – an embittered young scientist, Griffin, makes himself invisible, starting with comic capers in a Sussex village, and ending with demented murders
1898 The War of the Worlds – the Martians invade earth
1899 When The Sleeper Wakes/The Sleeper Wakes by H.G. Wells – Graham awakes in the year 2100 to find himself at the centre of a revolution to overthrow the repressive society of the future
1899 A Story of the Days To Come by H.G. Wells – set in the same future London as The Sleeper Wakes, Denton and Elizabeth defy her wealthy family in order to marry, fall into poverty, and experience life as serfs in the Underground city run by the sinister Labour Corps

1901 The First Men in the Moon by H.G. Wells – Mr Bedford and Mr Cavor use the invention of ‘Cavorite’ to fly to the moon and discover the underground civilisation of the Selenites
1904 The Food of the Gods and How It Came to Earth by H.G. Wells – scientists invent a compound which makes plants, animals and humans grow to giant size, prompting giant humans to rebel against the ‘little people’
1905 With the Night Mail by Rudyard Kipling – it is 2000 and the narrator accompanies a GPO airship across the Atlantic
1906 In the Days of the Comet by H.G. Wells – a comet passes through earth’s atmosphere and brings about ‘the Great Change’, inaugurating an era of wisdom and fairness, as told by narrator Willie Leadford
1908 The War in the Air by H.G. Wells – Bert Smallways, a bicycle-repairman from Kent, gets caught up in the outbreak of the war in the air which brings Western civilisation to an end
1909 The Machine Stops by E.M. Foster – people of the future live in underground cells regulated by ‘the Machine’ until one of them rebels

1912 The Lost World by Sir Arthur Conan Doyle – Professor Challenger leads an expedition to a plateau in the Amazon rainforest where prehistoric animals still exist
1912 As Easy as ABC by Rudyard Kipling – set in 2065 in a world characterised by isolation and privacy, forces from the ABC are sent to suppress an outbreak of ‘crowdism’
1913 The Horror of the Heights by Arthur Conan Doyle – airman Captain Joyce-Armstrong flies higher than anyone before him and discovers the upper atmosphere is inhabited by vast jellyfish-like monsters
1914 The World Set Free by H.G. Wells – A history of the future in which the devastation of an atomic war leads to the creation of a World Government, told via a number of characters who are central to the change
1918 The Land That Time Forgot by Edgar Rice Burroughs – a trilogy of pulp novellas in which all-American heroes battle ape-men and dinosaurs on a lost island in the Antarctic

1921 We by Evgeny Zamyatin – like everyone else in the dystopian future of OneState, D-503 lives life according to the Table of Hours, until I-330 wakens him to the truth
1925 Heart of a Dog by Mikhail Bulgakov – a Moscow scientist transplants the testicles and pituitary gland of a dead tramp into the body of a stray dog, with disastrous consequences
1927 The Maracot Deep by Arthur Conan Doyle – a scientist, engineer and a hero are trying out a new bathysphere when the wire snaps and they hurtle to the bottom of the sea, there to discover…

1930 Last and First Men by Olaf Stapledon – mind-boggling ‘history’ of the future of mankind over the next two billion years
1938 Out of the Silent Planet by C.S. Lewis – baddies Devine and Weston kidnap Ransom and take him in their spherical spaceship to Malacandra aka Mars,

1943 Perelandra (Voyage to Venus) by C.S. Lewis – Ransom is sent to Perelandra aka Venus, to prevent a second temptation by the Devil and the fall of the planet’s new young inhabitants
1945 That Hideous Strength: A Modern Fairy-Tale for Grown-ups by C.S. Lewis– Ransom assembles a motley crew to combat the rise of an evil corporation which is seeking to overthrow mankind
1949 Nineteen Eighty-Four by George Orwell – after a nuclear war, inhabitants of ruined London are divided into the sheep-like ‘proles’ and members of the Party who are kept under unremitting surveillance

1950 I, Robot by Isaac Asimov – nine short stories about ‘positronic’ robots, which chart their rise from dumb playmates to controllers of humanity’s destiny
1950 The Martian Chronicles – 13 short stories with 13 linking passages loosely describing mankind’s colonisation of Mars, featuring strange, dreamlike encounters with Martians
1951 Foundation by Isaac Asimov – the first five stories telling the rise of the Foundation created by psychohistorian Hari Seldon to preserve civilisation during the collapse of the Galactic Empire
1951 The Illustrated Man – eighteen short stories which use the future, Mars and Venus as settings for what are essentially earth-bound tales of fantasy and horror
1952 Foundation and Empire by Isaac Asimov – two long stories which continue the future history of the Foundation set up by psychohistorian Hari Seldon as it faces attack by an Imperial general, and then the menace of the mysterious mutant known only as ‘the Mule’
1953 Second Foundation by Isaac Asimov – concluding part of the ‘trilogy’ describing the attempt to preserve civilisation after the collapse of the Galactic Empire
1953 Earthman, Come Home by James Blish – the adventures of New York City, a self-contained space city which wanders the galaxy 2,000 years hence powered by spindizzy technology
1953 Fahrenheit 451 by Ray Bradbury – a masterpiece, a terrifying anticipation of a future when books are banned and professional firemen are paid to track down stashes of forbidden books and burn them
1953 Childhood’s End by Arthur C. Clarke a thrilling narrative involving the ‘Overlords’ who arrive from space to supervise mankind’s transition to the next stage in its evolution
1954 The Caves of Steel by Isaac Asimov – set 3,000 years in the future when humans have separated into ‘Spacers’ who have colonised 50 other planets, and the overpopulated earth whose inhabitants live in enclosed cities or ‘caves of steel’, and introducing detective Elijah Baley to solve a murder mystery
1956 The Naked Sun by Isaac Asimov – 3,000 years in the future detective Elijah Baley returns, with his robot sidekick, R. Daneel Olivaw, to solve a murder mystery on the remote planet of Solaria
1956 They Shall Have Stars by James Blish – explains the invention – in the near future – of the anti-death drugs and the spindizzy technology which allow the human race to colonise the galaxy
1957 The Black Cloud by Fred Hoyle – a vast cloud of gas heads into the solar system, blocking out heat and light from the sun with cataclysmic consequences on earth, until a small band of astronomers discovers the cloud contains intelligence and can be communicated with
1959 The Triumph of Time by James Blish – concluding story of Blish’s Okie tetralogy in which Amalfi and his friends are present at the end of the universe

1961 A Fall of Moondust by Arthur C. Clarke a pleasure tourbus on the moon is sucked down into a sink of moondust, sparking a race against time to rescue the trapped crew and passengers
1962 A Life For The Stars by James Blish – third in the Okie series about cities which can fly through space, focusing on the coming of age of kidnapped earther, young Crispin DeFord, aboard New York
1962 The Man in the High Castle by Philip K. Dick In an alternative future America lost the Second World War and has been partitioned between Japan and Nazi Germany. The narrative follows a motley crew of characters including a dealer in antique Americana, a German spy who warns a Japanese official about a looming surprise German attack, and a woman determined to track down the reclusive author of a hit book which describes an alternative future in which America won the Second World War
1963 Planet of the Apes by Pierre Boulle French journalist Ulysse Mérou accompanies Professor Antelle on a two-year space flight to the star Betelgeuse, where they land on an earth-like plane to discover that humans and apes have evolved here, but the apes are the intelligent, technology-controlling species while the humans are mute beasts
1968 2001: A Space Odyssey a panoramic narrative which starts with aliens stimulating evolution among the first ape-men and ends with a spaceman being transformed into galactic consciousness
1968 Do Androids Dream of Electric Sheep? by Philip K. Dick In 1992 androids are almost indistinguishable from humans except by trained bounty hunters like Rick Deckard who is paid to track down and ‘retire’ escaped andys
1969 Ubik by Philip K. Dick In 1992 the world is threatened by mutants with psionic powers who are combated by ‘inertials’. The novel focuses on the weird alternative world experienced by a group of inertials after a catastrophe on the moon

1971 Mutant 59: The Plastic Eater by Kit Pedler and Gerry Davis – a genetically engineered bacterium starts eating the world’s plastic
1973 Rendezvous With Rama by Arthur C. Clarke – in 2031 a 50-kilometre long object of alien origin enters the solar system, so the crew of the spaceship Endeavour are sent to explore it
1974 Flow My Tears, The Policeman Said by Philip K. Dick – America after the Second World War has become an authoritarian state. The story concerns popular TV host Jason Taverner who is plunged into an alternative version of this world in which he is no longer a rich entertainer but down on the streets among the ‘ordinaries’ and on the run from the police. Why? And how can he get back to his storyline?
1974 The Forever War by Joe Haldeman The story of William Mandella who is recruited into special forces fighting the Taurans, a hostile species who attack Earth outposts, successive tours of duty requiring interstellar journeys during which centuries pass on Earth, so that each of his return visits to the home planet show us society’s massive transformations over the course of the thousand years the war lasts.

1981 The Golden Age of Science Fiction edited by Kingsley Amis – 17 classic sci-fi stories from what Amis considers the Golden Era of the genre, namely the 1950s
1982 2010: Odyssey Two by Arthur C. Clarke – Heywood Floyd joins a Russian spaceship on a two-year journey to Jupiter to a) reclaim the abandoned Discovery and b) investigate the monolith on Japetus
1987 2061: Odyssey Three by Arthur C. Clarke – Spaceship Galaxy is hijacked and forced to land on Europa, moon of the former Jupiter, in a ‘thriller’ notable for Clarke’s descriptions of the bizarre landscapes of Halley’s Comet and Europa

2001: A Space Odyssey by Arthur C. Clarke (1968)

Origins

It all started with a short story Clarke wrote for a BBC competition in 1948 when he was just 21, and titled The Sentinel. It was eventually published in 1951 under the title Sentinel of Eternity.

13 years later, after completing Dr. Strangelove in 1964, American movie director Stanley Kubrick turned his thoughts to making a film with a science fiction subject. Someone suggested Clarke as a source and collaborator, and when they met, later in 1964, they got on well and formed a good working relationship.

Neither of them could have predicted that it would take them four long years of brainstorming, viewing and reading hundreds of sci-fi movies and stories, and then honing and refining the narrative, to develop the screenplay which became the film 2001: A Space Odyssey, released in 1968 and one of the most influential movies of all time.

The original plan had been to develop the story as a novel first, then turn it into a screenplay, then into the film, but the process ended up being more complex than that. The novel ended up being written mostly by Clarke, while Kubrick’s screenplay departed from it in significant ways.

The most obvious difference is that the book is full of Clarke’s sensible, down-to-earth, practical explanations of all or most of the science involved. It explains things. From the kick-start given to human evolution by the mysterious monolith through to Bowman’s journey through the Star Gate, Clarke explains and contextualises.

This is all in stark contrast with the film which Kubrick made as cryptic as possible by reducing dialogue to an absolute minimum, and eliminating all explanation. Kubrick is quoted as saying that the film was ‘basically a visual, nonverbal experience’, something which a novel, by definition, can not be.

The novel

The novel is divided into 47 short snappy chapters, themselves grouped into six sections.

1. Primeval Night

The basic storyline is reasonably clear. A million years ago an alien artefact appears on earth, materialising in Africa, in the territory of a small group of proto-human man-apes. Clarke describes their wretched condition in the hot parched Africa of the time, permanently bordering on starvation, watered only by a muddy streamlet, dying of malnutrition and weakness or of old age at 30, completely at the mercy of predators like a local leopard.

The object – 15 feet high and a yard wide – appears from nowhere. When the ape-men lumber past it on the way to their foraging ground, it becomes active and literally puts ideas into their heads. It takes possession of members of the group in turn and forces them to tie knots in grass, to touch their fingers together, to perform basic physical IQ tests. Then, crucially, it patiently shows them how to use stones and the bones of dead animals as tools.

The result is that they a) kill and eat a wild pig, the first meat ever eaten by the ape-men b) surround and kill the leopard that’s been menacing the tribe c) use these skills to bludgeon the leader of ‘the Others’, a smaller weaker tribe on the other side of the stream. In other words, the alien artefact has intervened decisively in the course of evolution to set man on his course to becoming a planet-wide animal killer and tool maker.

In the kind of fast-forward review section which books can do and movies can’t, Clarke then skates over the hundreds of thousands of years of evolution which follow, during which human’s teeth became smaller, their snouts less prominent, giving them the ability to make more precise sounds through their vocal cords – the beginnings of speech – how ice ages swept over the world killing most human species but leaving the survivors tougher, more flexible, more intelligent, and then the discovery of fire, of cooking, a widening of diet and survival strategies. And then to the recent past, to the Stone, Iron and Bronze ages, and sweeping right past the present to the near future and the age of space travel.

Compare and contrast the movie where all this is conveyed by the famous cut from a bone thrown into the air by an ape-man which is half way through its parabola when it turns into a space ship in orbit round earth. Prose describes, film dazzles.

2. T.M.A.-1

It is 2001. Humanity has built space stations in orbit around the earth, and a sizeable base on the moon. Dr Heywood Floyd, retired astrophysicist, is taking the journey from the American launch base in Florida, to dock with the orbiting space station, and then on to the moon base.

Clarke in his thorough, some might say pedantic, way, leaves no aspect of the trip undescribed and unexplained. How the rocket launcher works, how to prepare for blast-off, how the space station maintains a sort of gravity by rotating slowly, the precise workings of its space toilets (yes), the transfer to the shuttle down to the moon: Clarke loses no opportunity to mansplain every element of the journey, including some favourite facts familiar from the other stories I’ve read: the difference between weight and mass; how centrifugal spin creates increased gravity the further you are from the axis of spin; ‘the moon’s strangely close horizon’ (p.74); how damaging an alien artifact would be the work of a ‘barbarian’ (a thought repeated several times in Rama).

Two other features emerge. Clarke’s protagonists are always men, and they are almost always married men, keen to keep in touch with their wives, using videophones. In other words they’re not valiant young bucks as per space operas. It’s another element in the practical, level-headed approach of Clarke’s worldview.

Secondly, Clarke is a great one for meetingsChildhood’s End‘s middle sections rotate around the Secretary General of the United Nations who has a busy schedule of meetings, from his weekly conference with the Overlords to his meetings with the head of the Freedom league, and his discussion of issues arising with his number two.

A Fall of Moondust features hurried conferences between the top officials on the moon. The narrative of Rendezvous with Rama is punctuated all the way through by meetings of the committee made up of with representatives from the inhabited planets, who discuss the issues arising but also get on each other’s nerves, bicker and argue, grandstand, storm out and so on. His fondness for the set meeting, with a secretary taking notes and a chairman struggling to bring everyone into line, is another of the features which makes Clarke’s narratives seem so reassuringly mundane and rooted in reality.

Same here. Floyd is flying to the moon to take part in a top secret, high-level meeting of moon officials. He opens the meeting by conveying the President’s greetings and thanks (as people so often do in sci-fi thrillers like this).

In brief: a routine survey of the moon has turned up a magnetic anomaly in the huge crater named Tycho. (The anomaly has been prosaically named Tycho Magnetic Anomaly One – hence the section title T.M.A.-1.) When the surveyors dug down they revealed an object, perfectly smooth and perfectly black, eleven foot high, five foot wide and one and a quarter foot deep. Elementary geology has shown that the object was buried there three million years ago.

After a briefing with the moon team Floyd goes out by lunar tractor to the excavation site where digging has now fully revealed the artifact. Floyd and some others go down into the excavation and walk round the strange object which seems to absorb light. The sun is rising (the moon turns on its axis once in fourteen days) and as its light falls onto the artifact – for probably the first time in millions of years – Floyd and the others are almost deafened by five intense burst of screeching sound which cut through their radio communications.

Millions of miles away in space, deep space monitors, orbiters round Mars, a probe launched to Pluto – all record and measure an unusual burst of energy streaking across the solar system… Cut to:

3. Between Planets

David Bowman is captain of the spaceship Discovery. It was built to transport two live passengers (himself and Frank Poole) and three others in suspended animation, to Jupiter. But two years into the project the TMA-1 discovery was made and plans were changed. Now the ship is intending to use the gravity of Jupiter as a sling to propel it on towards Saturn. When they enter Saturn’s orbit the three sleeping crew members (nicknamed ‘hibernauts’) will be woken and the full team of five will have 100 days to study the super-massive gas giant, before all the crew re-enter hibernation, and wait to be picked up by Discovery II, still under construction.

Clarke is characteristically thorough in describing just about every aspect of deep space travel you could imagine, the weightlessness, the scientific reality of hibernation, the food, what the earth looks like seen from several million miles away. He gives an hour by hour rundown of Bowman and Poole’s 24-hour schedule, which is every bit as boring as the thing itself. He describes in minute astronomical detail the experience of flying through the asteroid belt and on among the moons of Jupiter, watching the sun ‘set’ behind it and other strange and haunting astronomical phenomena which no one has seen.

Then there’s a sequence in which he imagines the pictures sent back by a probe which Bowman and Poole send down into Jupiter’s atmosphere: fantastic but completely plausible imaginings. After reporting what they see from the ship, and the images relayed by the probe, the couple have done with Jupiter and set their faces to Saturn, some three months and four hundred million miles away.

The awesomeness doesn’t come from the special effects and canny use of classical music, as per the movie, but from straightforward statement of the scientific and technical facts – such as that they are now 700 million miles from earth (p.131), travelling at a speed of over one hundred thousand miles an hour (p.114).

4. Abyss

All activities on the Discovery are run or monitored by the ship’s onboard computer, HAL 9000, ‘the brain and nervous system of the ship’ (p.97). HAL stands for Heuristically programmed ALgorithmic computer. It is the most advanced form of the self-teaching neural network which, Clarke predicts, will have been discovered in the 1980s.

HAL has a nervous breakdown. He predicts the failure of the unit which keeps the radio antenna pointed at earth. Poole goes out in one of the nine-foot space pods, anchors to the side of the ship, then does a short space walk in a space suit, unbolts the failing unit and replaces it.

But back inside the ship the automatic testing devices find nothing wrong with the unit. When a puzzled Bowman and Poole report all this back to earth, Mission Control come back with the possibility that the HAL 9000 unit might have made a mistake.

Poole and Bowman ponder the terrifying possibility that the computer which is running the whole mission might be failing. Mission Control send a further message saying the two HAL 9000 units they are using to replicate all aspects of the mission back home both now recommend disconnecting the HAL computer aboard the Discovery. Earth is just in the middle of starting to give details about how to disconnect HAL when the radio antenna unit really does fail and contact with earth is broken. Coincidence? Bear in mind that HAL has been monitoring all of these conversations…

After discussing the possibility that HAL was right all along about the unit and that they are being paranoid  about him, Poole goes out for another space walk and repair. He’s in the middle of installing the new unit when he sees something out the corner of his eye, looks up and sees the pod suddenly shooting straight at him. With no time to take evasive action Poole is crushed by the ten-ton pod, his space suit ruptured, he is dead in seconds. Through an observation window Bowman sees first the pod and then Bowman’s body fly past and away from the ship.

Bowman confronts Hal, who calmly regrets that there has been accident. Mission orders demand that Bowman now revive one of the three hibernators since there must always be two people active on the ship. HAL argues with Bowman, saying this won’t be necessary, by which stage Bowman realises there is something seriously wrong. He threatens to disconnect HAL at which point the computer abruptly relents. Bowman makes his way to the three hibernator pods and has just started to revive the next in line of command, Whitehead when… HAL opens both doors of the ship’s airlock and all the air starts to flood out into space. In the seconds before the ship becomes a vacuum, Bowman manages to make it to an emergency alcove, seal himself in, jets it up with oxygen and climb into the spacesuit kept there for just such emergencies.

Having calmed down from the shock, Bowman secures his suit then climbs out, makes his way through the empty, freezing, lifeless ship to the sealed room where HAL’s circuits are stored and powered and… systematically removes all the ‘higher’ functions which permit HAL to ‘think’, leaving only the circuits which control the ship’s core functions. HAL asks him not to and, exactly as in the film, reverts to his ‘childhood’, his earliest learning session, finally singing the song ‘Daisy, Daisy, give me your answer do.’

Hours later Bowman makes a journey in the remaining pod to fix the radio antenna, then returns, closes the airlock doors and slowly restores atmosphere to the ship. Then contacts earth. And it is only now that Dr Floyd, summoned by Mission Control, tells him the true reason for the mission. Tells him about the artifact in Tycho crater. Tells him that it emitted some form of energy which all our monitors indicate was targeted at Saturn, specifically at one of its many moon, Japetus. That is what the Discovery has been sent to investigate.

And it is only in the book that Clarke is able to tell us why HAL went mad. It was the conflict between a) the demand to be at all times totally honest, open and supportive of his human crew and b) the command to keep the true purpose of the mission secret, which led HAL to have a nervous breakdown, and decide to remove one half of the conflict i.e. the human passengers, which would allow him to complete the second half, the mission to Saturn, in perfect peace of ‘mind’.

5. The Moons of Saturn

So now Bowman properly understands the mission, goes about fixing the Discovery, is in constant contact with earth and Clarke gives us an interesting chapter pondering the meaning of the sentinel and what it could have been saying. Was it a warning to its makers, or a message to invade? Where was the message sent? To beings which had evolved on or near Saturn (impossible, according to all the astrophysicists)? Or to somewhere beyond the solar system itself? In which case how could anything have travelled that far, if Einstein is correct and nothing can travel faster than light?

These last two chapters have vastly more factual information in than the movie. What the movie does without any dialogue, with stunning images and eerie music, Clarke does with his clear authoritative factual explanations. He gives us detailed descriptions of the rings of Saturn from close up, along with meticulously calculated information about perihelions and aphelions and the challenges of getting into orbit around Saturn.

But amid all this factuality is the stunning imaginative notion that the moon of Saturn, Japetus, bears on its surface a vast white eye shape at the centre of which stands an enormous copy of the TMA artifact, a huge jet black monolith maybe a mile high.

Which leads into a chapter describing the race which placed it there, which had evolved enough to develop planet travel, then space travel, then moved their minds into artificial machines and then into lattices of light which could spread across space and so, finally, into what humans would call spirit, free from time and space, at one with the universe.

It is this enormous artifact which Bowman now radios Mission Control he is about to go down to in the pod and explore.

6. Through the Star Gate

In the movie this section becomes a non-verbal experience of amazing visual effects. A book can’t do that. It has to describe and, being Clarke, can’t help also explaining, at length, what is going on.

Thus the book is much clearer and more comprehensible about what happens in this final section. Bowman guides his pod down towards the enormous artifact and is planning to land on its broad ‘top’ when, abruptly it turns from being an object sticking out towards him into a gate or cave or tunnel leading directly through the moon it’s situated on. He has just time to make one last comment to Mission Control before the pod is sucked through into the star gate and his adventure begins.

He travels along some faster-than-light portal, watching space bend around him and time slow down to a halt. He emerges into a place where the stars are more static and, looking back, sees a planet with a flat face pockmarked by black holes like the one he’s just come through, and what, when he looks closely, seems to be the wreck of a metal spaceship. He realises this must be a kind of terminal for spaceships between voyages, then the pod slowly is sucked back into one of the holes.

More faster than light travelling, then he emerges into a completely unknown configuration of stars, red dwarfs, sun clusters, the pod slows to a halt and comes to rest in… a hotel room.

Terrified, Bowman makes all the necessary checks, discovers it has earth gravity and atmosphere, gets out of the pod, takes off his spacesuit, has a shower and shave, dresses in one of the suits of clothes provided in a wardrobe, checks out the food in the fridge, or in tins or boxes of cereal.

But he discovers that the books on the coffee table have no insides, the food inside the containers is all the same blue sludge. When he lies on the bed flicking through the channels on the TV he stumbles across a soap opera which is set in this very same hotel room he is lying in. Suddenly he understands. The sentinel, after being unearthed, monitored all radio and TV signals from earth and signalled them to the Japetus relay station and on here – wherever ‘here’ is – and used them as a basis to create a ‘friendly’ environment for their human visitor.

Bowman falls asleep on the bed and while he sleeps goes back in time, recapitulating his whole life. And part of him is aware that all the information of his entire life is being stripped from his mind and transferred to a lattice of light, the same mechanism which Clarke explained earlier in the novel, was the invention of the race which created the sentinel. Back, back, back his life reels until – in a miraculous moment – the room contains a baby, which opens its mouth to utter its first cry.

The crystal monolith appears, white lights flashing and fleering within its surface, as we saw them do when it first taught the man-apes how to use tools and eat meat, all those hundreds of thousands of years ago.

Now it is probing and instructing the consciousness of Bowman, guiding him towards the next phase. The monolith disappears. The being that was Bowman understands, understands its meaning, understands how to travel through space far faster than the primitive star gate he came here by. All he needs is to focus his ‘mind’ and he is there.

For a moment he is terrified by the immensity of space and the infinity of the future, but then realises he is not alone, becomes aware of some force supporting and sustaining him, the guiders.

Using thought alone he becomes present back in the solar system he came from. Looking down he becomes aware of alarm bells ringing and flotillas of intercontinental missiles hurtling across continents to destroy each other. He has arrived just as a nuclear war was beginning. Preferring an uncluttered sky, he abolishes all the missiles with his will.

Then he waited, marshalling his thoughts and brooding over his still untested powers. For though he was master of the world, he was not quite sure what to do next.

But he would think of something.

And those are the final sentences of the book.

Thoughts

Like Childhood’s End the book proceeds from fairly understandable beginnings to a mind-boggling, universe-wide ending, carrying the reader step by step through what feels almost – if you let it take control of your imagination – like a religious experience.

Eliot Fremont-Smith reviewing the book in the New York Times, commented that it was ‘a fantasy by a master who is as deft at generating accelerating, almost painful suspense as he is knowledgeable and accurate (and fascinating) about the technical and human details of space flight and exploration.’

That strikes me as being a perfect summation of Clarke’s appeal – the combination of strict technical accuracy, with surprisingly effective levels of suspense and revelation.

His concern for imagining the impact of tiny details reminds me of H.G. Wells. In the Asimov and Blish stories I’ve been reading, if there’s a detail or the protagonist notices something, it will almost certainly turn out to be important to the plot. Clarke is the direct opposite. Like Wells his stories are full of little details whose sole purpose is to give the narrative a terrific sense of verisimilitude.

To pick one from hundreds, I was struck by the way that Dr Floyd finds wearing a spacesuit on the surface of the moon reassuring. Why? Because its extra weight and stiffness counter the one sixth gravity of the moon, and so subconsciously remind him of the gravity on earth. Knowing that fact, and then deploying it in order to describe the slight but detectable impact it has on one of his characters’ moods,strikes me as typical Clarke.

Hundreds of other tiny but careful thinkings-though of the situations which his characters find themselves in, bring them home and make them real.

And as to suspense, Clarke is a great fan of the simple but straightforward technique of ending chapters with a threat of disaster. E.g. after his first space walk Poole returns to the ship confident that he has fixed the problem.

In this, however, he was sadly mistaken. (p.140)

Although this is pretty cheesy, it still works. He is a master of suspense. The three other novels I’ve read by him are all thrilling, and even though I’ve seen the movie umpteen times and so totally know the plot, reading Clarke’s book I was still scared when HAL started malfunctioning, and found Bowman’s struggle to disconnect him thrilling and moving.

As to the final section, when Bowman travels through the star gate and is transformed into a new form of life, of celestial consciousness, if you surrender to the story the experience is quite mind-boggling.

It also explains a lot – and makes much more comprehensible – what is left to implication and special effects in the movie.

Forlorn predictions

Clarke expects that by 2001:

  • there will be a permanent colony on the moon, where couples will be having and bringing up children destined never to visit the earth
  • there will also be a colony on Mars
  • there will be a ‘plasma drive’ which allows for super-fast spaceship travel to other planets

I predict there will never be a colony on the moon, let alone Mars, and no ‘plasma drive’.

On the plus side, Clarke predicts that by 2001 there will be a catastrophic six billion people on earth, which will result in starvation, and food preservation policies even in the rich West. In the event there were some 6.2 billion people alive in 2001, but although there were the usual areas of famine in the world, there wasn’t the really widespread food shortages Clarke predicted.

The future has turned out to be much more human, mundane, troubled and earth-bound than Clarke and his generation expected.

Trailer

Credit

All references are to the 2011 reprint of the 1998 Orbit paperback edition of 2001: A Space Odyssey by Arthur C. Clarke, first published by Hutchinson in 1968.


Related links

Arthur C. Clarke reviews

  • Childhood’s End (1953) a thrilling narrative involving the ‘Overlords’ who arrive from space to supervise mankind’s transition to the next stage in its evolution
  • A Fall of Moondust (1961) a pleasure tourbus on the moon is sucked down into a sink of moondust, sparking a race against time to rescue the trapped crew and passengers
  • 2001: A Space Odyssey (1968) a panoramic narrative which starts with aliens stimulating evolution among the first ape-men and ends with a spaceman being transformed into galactic consciousness
  • Rendezvous With Rama (1973) it is 2031 and when an alien object, a cylinder 15 k wide by 50 k long, enters the solar system, and Commander Norton and the crew of Endeavour are sent to explore it

Other science fiction reviews

1888 Looking Backward 2000-1887 by Edward Bellamy – Julian West wakes up in the year 2000 to discover a peaceful revolution has ushered in a society of state planning, equality and contentment
1890 News from Nowhere by William Morris – waking from a long sleep, William Guest is shown round a London transformed into villages of contented craftsmen

1895 The Time Machine by H.G. Wells – the unnamed inventor and time traveller tells his dinner party guests the story of his adventure among the Eloi and the Morlocks in the year 802,701
1896 The Island of Doctor Moreau by H.G. Wells – Edward Prendick is stranded on a remote island where he discovers the ‘owner’, Dr Gustave Moreau, is experimentally creating human-animal hybrids
1897 The Invisible Man by H.G. Wells – an embittered young scientist, Griffin, makes himself invisible, starting with comic capers in a Sussex village, and ending with demented murders
1898 The War of the Worlds – the Martians invade earth
1899 When The Sleeper Wakes/The Sleeper Wakes by H.G. Wells – Graham awakes in the year 2100 to find himself at the centre of a revolution to overthrow the repressive society of the future
1899 A Story of the Days To Come by H.G. Wells – set in the same London of the future described in the Sleeper Wakes, Denton and Elizabeth fall in love, then descend into poverty, and experience life as serfs in the Underground city run by the sinister Labour Corps

1901 The First Men in the Moon by H.G. Wells – Mr Bedford and Mr Cavor use the invention of ‘Cavorite’ to fly to the moon and discover the underground civilisation of the Selenites
1904 The Food of the Gods and How It Came to Earth by H.G. Wells – two scientists invent a compound which makes plants, animals and humans grow to giant size, leading to a giants’ rebellion against the ‘little people’
1905 With the Night Mail by Rudyard Kipling – it is 2000 and the narrator accompanies a GPO airship across the Atlantic
1906 In the Days of the Comet by H.G. Wells – a passing comet trails gasses through earth’s atmosphere which bring about ‘the Great Change’, inaugurating an era of wisdom and fairness, as told by narrator Willie Leadford
1908 The War in the Air by H.G. Wells – Bert Smallways, a bicycle-repairman from Bun Hill in Kent, manages by accident to be an eye-witness to the outbreak of the war in the air which brings Western civilisation to an end
1909 The Machine Stops by E.M. Foster – people of the future live in underground cells regulated by ‘the Machine’ until one of them rebels

1912 The Lost World by Sir Arthur Conan Doyle – Professor Challenger leads an expedition to a plateau in the Amazon rainforest where prehistoric animals still exist
1912 As Easy as ABC by Rudyard Kipling – set in 2065 in a world characterised by isolation and privacy, forces from the ABC are sent to suppress an outbreak of ‘crowdism’
1913 The Horror of the Heights by Arthur Conan Doyle – airman Captain Joyce-Armstrong flies higher than anyone before him and discovers the upper atmosphere is inhabited by vast jellyfish-like monsters
1914 The World Set Free by H.G. Wells – A history of the future in which the devastation of an atomic war leads to the creation of a World Government, told via a number of characters who are central to the change
1918 The Land That Time Forgot by Edgar Rice Burroughs – a trilogy of pulp novellas in which all-American heroes battle ape-men and dinosaurs on a lost island in the Antarctic

1921 We by Evgeny Zamyatin – like everyone else in the dystopian future of OneState, D-503 lives life according to the Table of Hours, until I-330 wakens him to the truth
1925 Heart of a Dog by Mikhail Bulgakov – a Moscow scientist transplants the testicles and pituitary gland of a dead tramp into the body of a stray dog, with disastrous consequences
1927 The Maracot Deep by Arthur Conan Doyle – a scientist, engineer and a hero are trying out a new bathysphere when the wire snaps and they hurtle to the bottom of the sea, there to discover…

1930 Last and First Men by Olaf Stapledon – mind-boggling ‘history’ of the future of mankind over the next two billion years
1932 Brave New World by Aldous Huxley
1938 Out of the Silent Planet by C.S. Lewis – baddies Devine and Weston kidnap Ransom and take him in their spherical spaceship to Malacandra aka Mars,

1943 Perelandra (Voyage to Venus) by C.S. Lewis – Ransom is sent to Perelandra aka Venus, to prevent a second temptation by the Devil and the fall of the planet’s new young inhabitants
1945 That Hideous Strength: A Modern Fairy-Tale for Grown-ups by C.S. Lewis– Ransom assembles a motley crew to combat the rise of an evil corporation which is seeking to overthrow mankind
1949 Nineteen Eighty-Four by George Orwell – after a nuclear war, inhabitants of ruined London are divided into the sheep-like ‘proles’ and members of the Party who are kept under unremitting surveillance

1950 I, Robot by Isaac Asimov – nine short stories about ‘positronic’ robots, which chart their rise from dumb playmates to controllers of humanity’s destiny
1950 The Martian Chronicles – 13 short stories with 13 linking passages loosely describing mankind’s colonisation of Mars, featuring strange, dreamlike encounters with Martians
1951 Foundation by Isaac Asimov – the first five stories telling the rise of the Foundation created by psychohistorian Hari Seldon to preserve civilisation during the collapse of the Galactic Empire
1951 The Illustrated Man – eighteen short stories which use the future, Mars and Venus as settings for what are essentially earth-bound tales of fantasy and horror
1952 Foundation and Empire by Isaac Asimov – two long stories which continue the future history of the Foundation set up by psychohistorian Hari Seldon as it faces down attack by an Imperial general, and then the menace of the mysterious mutant known only as ‘the Mule’
1953 Second Foundation by Isaac Asimov – concluding part of the ‘trilogy’ describing the attempt to preserve civilisation after the collapse of the Galactic Empire
1953 Earthman, Come Home by James Blish – the adventures of New York City, a self-contained space city which wanders the galaxy 2,000 years hence powered by spindizzy technology
1953 Fahrenheit 451 by Ray Bradbury – a masterpiece, a terrifying anticipation of a future when books are banned and professional firemen are paid to track down stashes of forbidden books and burn them
1953 Childhood’s End by Arthur C. Clarke – a thrilling tale of the Overlords who arrive from space to supervise mankind’s transition to the next stage in its evolution
1954 The Caves of Steel by Isaac Asimov – set 3,000 years in the future when humans have separated into ‘Spacers’ who have colonised 50 other planets, and the overpopulated earth whose inhabitants live in enclosed cities or ‘caves of steel’, and introducing detective Elijah Baley to solve a murder mystery
1956 The Naked Sun by Isaac Asimov – 3,000 years in the future detective Elijah Baley returns, with his robot sidekick, R. Daneel Olivaw, to solve a murder mystery on the remote planet of Solaria
1956 They Shall Have Stars by James Blish – explains the invention – in the near future – of the anti-death drugs and the spindizzy technology which allow the human race to colonise the galaxy
1959 The Triumph of Time by James Blish – concluding story of Blish’s Okie tetralogy in which Amalfi and his friends are present at the end of the universe

1962 A Life For The Stars by James Blish – third in the Okie series about cities which can fly through space, focusing on the coming of age of kidnapped earther, young Crispin DeFord, aboard New York

1971 Mutant 59: The Plastic Eater by Kit Pedler and Gerry Davis – a genetically engineered bacterium starts eating the world’s plastic

1980 Russian Hide and Seek by Kingsley Amis – in an England of the future which has been invaded and conquered by the Russians, a hopeless attempt to overthrow the occupiers is easily crushed
1981 The Golden Age of Science Fiction edited by Kingsley Amis – 17 classic sci-fi stories from what Amis considers the Golden Era of the genre, namely the 1950s

%d bloggers like this: