A Brief History of Time: From the Big Bang to Black Holes by Stephen Hawking (1988)

The whole history of science has been the gradual realisation that events do not happen in an arbitrary manner, but that they reflect a certain underlying order. (p.122)

This book was a publishing phenomenon when it was published in 1988. Nobody thought a book of abstruse musings about obscure theories of cosmology would sell, but it became a worldwide bestseller, selling more than 10 million copies in 20 years. It was on the London Sunday Times bestseller list for more than five years and was translated into 35 languages by 2001. So successful that Hawking went on to write seven more science books on his own, and co-author a further five.

Accessible As soon as you start reading you realise why. From the start is it written in a clear accessible way and you are soon won over to the frank, sensible, engaging tone of the author. He tells us he is going to explain things in the simplest way possible, with an absolute minimum of maths or equations (in fact, the book famously includes only one equation E = mc²).

Candour He repeatedly tells us that he’s going to explain things in the simplest possible way, and the atmosphere is lightened when Hawking – by common consent one of the great brains of our time – confesses that he has difficulty with this or that aspect of his chosen subject. (‘It is impossible to imagine a four-dimensional space. I personally find it hard enough to visualise three-dimensional space!’) We are not alone in finding it difficult!

Historical easing Also, like most of the cosmology books I’ve read, it takes a deeply historical view of the subject. He doesn’t drop you into the present state of knowledge with its many accompanying debates i.e. at the deep end. Instead he takes you back to the Greeks and slowly, slowly introduces us to their early ideas, showing why they thought what they thought, and how the ideas were slowly disproved or superseded.

A feel for scientific change So, without the reader being consciously aware of the fact, Hawking accustoms us to the basis of scientific enquiry, the fundamental idea that knowledge changes, and from two causes: from new objective observations, often the result of new technologies (like the invention of the telescope which enabled Galileo to make his observations) but more often from new ideas and theories being worked out, published and debated.

Hawking’s own contributions There’s also the non-trivial fact that, from the mid-1960s onwards, Hawking himself has made a steadily growing contribution to some of the fields he’s describing. At these points in the story, it ceases to be an objective history and turns into a first-person account of the problems as he saw them, and how he overcame them to develop new theories. It is quite exciting to look over his shoulder as he explains how and why he came up with the new ideas that made him famous. There are also hints that he might have trodden on a few people’s toes in the process, for those who like their science gossipy.

Thus it is that Hawking starts nice and slow with the ancient Greeks, with Aristotle and Ptolemy and diagrams showing the sun and other planets orbiting round the earth. Then we are introduced to Copernicus, who first suggested the planets orbit round the sun, and so on. With baby steps he takes you through the 19th century idea of the heat death of the universe, on to the discovery of the structure of the atom at the turn of the century, and then gently introduces you to Einstein’s special theory of relativity of 1905. (The special theory of relativity doesn’t take account of gravity, the general theory of relativity of 1915, does, take account of gravity).

Chapter 1 Our Picture of the Universe (pp.1-13)

Aristotle thinks earth is stationary. Calculates size of the earth. Ptolemy. Copernicus. In 1609 Galileo starts observing Jupiter using the recently invented telescope. Kepler suggests the planets move in ellipses not perfect circles. 1687 Isaac newton publishes Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) ‘probably the most important single work ever published in the physical sciences’, among many other things postulating a law of universal gravity. One implication of Newton’s theory is that the universe is vastly bigger than previously conceived.

In 1823 Heinrich Olbers posited his paradox which is, if the universe is infinite, the night sky out to be as bright as daylight because the light from infinite suns would reach us. Either it is not infinite or it has some kind of limit, possibly in time i.e. a beginning. The possible beginning or end of the universe were discussed by Immanuel Kant in his obscure work A Critique of Pure Reason  (1781). Various other figures debated variations on this theme until in 1929 Edwin Hubble made the landmark observation that, wherever you look, distant galaxies are moving away from us i.e. the universe is expanding. Working backwards from this observation led physicists to speculate that the universe was once infinitely small and infinitely dense, in a state known as a singularity, which must have exploded in an event known as the big bang.

He explains what a scientific theory is:

A theory is just a model of the universe, or a restricted part of it, and a set of rules that relate quantities in the model to observations that we make… A theory is a good theory if it satisfies two requirements: it must accurately describe a large class of observations on the basis of a model that contains only a few arbitrary elements, and it must make definite predictions about the results of future observations.

A theory is always provisional. The more evidence proving it, the stronger it gets. But it only takes one good negative observation to disprove a theory.

Today scientists describe the universe in terms of two basic partial theories – the general theory of relativity and quantum mechanics. They are the great intellectual achievements of the first half of this century.

But they are inconsistent with each other. One of the major endeavours of modern physics is to try and unite them in a quantum theory of gravity.

Chapter 2 Space and Time (pp.15-34)

Aristotle thought everything in the universe was naturally at rest. Newton disproved this with his first law – whenever a body is not acted on by any force it will keep on moving in a straight line at the same speed. Newton’s second law stats that, When a body is acted on by a force it will accelerate or change its speed at a rate that is proportional to the force. Newton’s law of gravity states that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centres. But like Aristotle, Newton believed all the events he described took place in a kind of big static arena named absolute space, and that time was an absolute constant. The speed of light was also realised to be a constant. In 1676 Danish astronomer Ole Christensen estimated the speed of light to be 140,000 miles per second. We now know it is 186,000 miles per second. In the 1860s James Clerk Maxwell unified the disparate theories which had been applied to magnetism and electricity.

In 1905 Einstein published his theory of relativity. It is derived not from observation but from Einstein working through in his head the consequences and shortcomings of the existing theories. Newton had posited a privileged observer, someone outside the universe who was watching it as if a play on a stage. From this privileged position a number of elements appeared constant, such as time.

Einstein imagines a universe in which there is no privileged outside point of view. We are all inside the universe and all moving. The theory threw up a number of consequences. One is that energy is equal to mass times the speed of light squared, or E = mc². Another is that nothing may travel faster than the speed of light. Another is that, as an object approaches the speed of light its mass increases. One of its most disruptive ideas is that time is relative. Different observes, travelling at different speeds, will see a beam of light travel take different times to travel a fixed distance. Since Einstein has made it axiomatic that the speed of light is fixed, and we know the distance travelled by the light is fixed, then time itself must appear different to different observers. Time is something that can change, like the other three dimensions. Thus time can be added to the existing three dimensions to create space-time.

The special theory of relativity was successful in explaining how the speed of light appears the same to all observers, and describing what happens to things when they move close to the speed of light. But it was inconsistent with Newton’s theory of gravity which says objects attract each other with a force related to the distance between them. If you move on of the objects the force exerted on the other object changes immediately. This cannot be if nothing can travel faster than the speed of light, as the special theory of relativity postulates. Einstein spent the ten or so years from 1905 onwards attempting to solve this difficulty. Finally, in 1915, he published the general theory of relativity.

The revolutionary basis of this theory is that space is not flat, a consistent  continuum or Newtonian stage within which events happen and forces interact in a sensible way. Space-time is curved or warped by the distribution of mass or energy within it, and gravity is a function of this curvature. Thus the earth is not orbiting around the sun in a circle, it is following a straight line in warped space.

The mass of the sun curves space-time in such a way that although the earth follows a straight line in four-dimensional pace-time, it appears to us to move along a circular orbit in three-dimensional space. (p.30)

In fact, at a planetary level Einstein’s maths is only slightly different from Newton’s but it predicts a slight difference in the orbit of Mercury which observations have gone on to prove. Also, the general theory predicts that light will bend, following a straight line but through space that is warped or curved by gravity. Thus the light from a distant star on the far side of the sun will bend as it passes close to the sun due to the curvature in space-time caused by the sun’s mass. And it was an expedition to West Africa in 1919 to observe an eclipse, which showed that light from distant stars did in fact bend slightly as it passed the sun, which helped confirm Einstein’s theory.

Newton’s laws of motion put an end to the idea of absolute position in space. The theory of relativity gets rid of absolute time.

Hence the thought experiment popularised by a thousand science fiction books that astronauts who set off in a space ship which gets anywhere near the speed of light will experience a time which is slower than the people they leave behind on earth.

In the theory of relativity there is no unique absolute time, but instead each individual has his own personal measure of time that depends on where he is and how he is moving. (p.33)

Obviously, since most of us are on planet earth, moving at more or less the same speed, everyone’s personal ‘times’ coincide. Anyway, the key central implication of Einstein’s general theory of relativity is this:

Before 1915, space and time were thought of as a fixed arena in which events took place, but which was not affected by what happened in it. This was true even of the special theory of relativity. Bodies moved, forces attracted and repelled, but time and space simply continued, unaffected. It was natural to think that space and time went on forever.

the situation, however, is quite different in the general theory of relativity. Space and time are now dynamic quantities. : when a body moves, or a force acts, it affects the curvature of space and time – and in turn the structure of space-time affects the way in which bodies move and forces act. Space and time not only affect but also are affected by everything that happens in the universe. (p.33)

This view of the universe as dynamic and interacting, by demolishing the old eternal static view, opened the door to a host of new ways of conceiving how the universe might have begun and might end.

Chapter 3 The Expanding Universe (pp.35-51)

Our modern picture of the universe dates to 1924 when American astronomer Edwin Hubble demonstrated that ours is not the only galaxy. We now know the universe is home to some hundred million galaxies, each containing some hundred thousand million stars. We live in a galaxy that is about one hundred thousand light-years across and is slowly rotating. Hubble set about cataloguing the movement of other galaxies and in 1929 published his results which showed that they are all moving away from us, and that, the further away a galaxy is, the faster it is moving.

The discovery that the universe is expanding was one of the great intellectual revolutions of the twentieth century. (p.39)

From Newton onwards there was a universal assumption that the universe was infinite and static. Even Einstein invented a force he called ‘the cosmological constant’ in order to counter the attractive power of gravity and preserve the model of a static universe. It was left to Russian physicist Alexander Friedmann to seriously calculate what the universe would look like if it was expanding.

In 1965 two technicians, Arno Penzias and Robert Wilson, working at Bell Telephone Laboratories discovered a continuous hum of background radiation coming from all parts of the sky. This echoed the theoretical work being done by two physicists, Bob Dicke and Jim Peebles, who were working on a suggestion made by George Gamow that the early universe would have been hot and dense. They posited that we should still be able to see the light from this earliest phase but that it would, because the redshifting, appear as radiation. Penzias and Wilson were awarded the Nobel Prize in 1987.

How can the universe be expanding? Imagine blowing up a balloon with dots (or little galaxies) drawn on it: they all move apart from each other and the further apart they are, the larger the distance becomes; but there is no centre to the balloon. Similarly the universe is expanding but not into anything. There is no outside. If you set out to travel to the edge you would find no edge but instead find yourself flying round the periphery and end up back where you began.

There are three possible states of a dynamic universe. Either 1. it will expand against the contracting force of gravity until the initial outward propulsive force is exhausted and gravity begins to win; it will stop expanding, and start to contract. Or 2. it is expanding so fast that the attractive, contracting force of gravity never wins, so the universe expands forever and matter never has time to clump together into stars and planets. Or 3. it is expanding at just the right speed to escape collapsing back in on itself, but but so fast as to make the creation of matter impossible. This is called the critical divide. Physicists now believe the universe is expanding at just around the value of the critical divide, though whether it is just under or just above (i.e. the universe will eventually cease expanding, or not) is not known.

Dark matter We can calculate the mass of all the stars and galaxies in the universe and it is a mystery that our total is only about a hundredth of the mass that must exist to explain the gravitational behaviour of stars and galaxies. In other words, there must a lot of ‘dark matter’ which we cannot currently detect in order for the universe to be shaped the way it is.

So we don’t know what the likely future of the universe is (endless expansion or eventual contraction) but all the Friedmann models do predict that the universe began in an infinitely dense, infinitely compact, infinitely hot state – the singularity.

Because mathematics cannot really handle infinite numbers, this means that the general theory of relativity… predicts that there is a point in the universe where the theory itself breaks down… In fact, all our theories of science are formulated on the assumption that space-time is smooth and nearly flat, so they break down at the big bang singularity, where the curvature of space-time is infinite. (p.46)

Opposition to the theory came from Hermann Bondi, Thomas Gold and Fred Hoyle who formulated the steady state theory of the universe i.e. it has always been and always will be. All that is needed to explain the slow expansion is the appearance of new particles to keep it filled up, but the rate is very low (about one new particle per cubic kilometre per year). They published it in 1948 and worked through all its implications for the next few decades, but it was killed off as a theory by the 1965 observations of the cosmic background radiation.

He then explains the process whereby he elected to do a PhD expanding Roger Penrose’s work on how a dying star would collapse under its own weight to a very small size. The collaboration resulted in a joint 1970 paper which proved that there must have been a big bang, provided only that the theory of general relativity is correct, and the universe contains as much matter as we observe.

If the universe really did start out as something unimaginably small then, from the 1970s onwards, physicists turned their investigations to what happens to matter at microscopic levels.

Chapter 4 The Uncertainty Principle (pp.53-61)

1900 German scientist Max Planck suggests that light, x-rays and other waves can only be emitted at an arbitrary wave, in packets he called quanta. He theorised that the higher the frequency of the wave, the more energy would be required. This would tend to restrict the emission of high frequency waves. In 1926 Werner Heisenberg expanded on these insights to produce his Uncertainty Principle. In order to locate a particle in order to measure its position and velocity you need to shine a light on it. One has to use at least one quantum of energy. However, exposing the particle to this quantum will disturb the velocity of the particle.

In other words, the more accurately you try to measure the position of the particle, the less accurately you can measure its speed, and vice versa. (p.55)

Heisenberg showed that the uncertainty in the position of the particle times the uncertainty in its velocity times the mass of the particle can never be smaller than a certain quantity, which is known as Planck’s constant. For the rest of the 1920s Heisenberg, Erwin Schrödinger and Paul Dirac reformulated mechanics into a new theory titled quantum mechanics. In this theory particles no longer have separate well-defined positions and velocities, instead they have a general quantum state which is a combination of position and velocity.

Quantum mechanics introduces an unavoidable element of unpredictability or randomness into science. (p.56)

Also, particles can no longer be relied on to be particles. As a result of Planck and Heisenberg’s insights, particles have to be thought of as sometimes behaving like waves, sometimes like particles. In 1913 Niels Bohr had suggested that electrons circle round a nucleus at certain fixed points, and that it takes energy to dislodge them from these optimum orbits. Quantum theory helped explain Bohr’s theory by conceptualising the circling electrons not as particles but as waves. If electrons are waves, as they circle the nucleus, their wave lengths would cancel each other out unless they are perfect numbers. The frequency of the waves have to be able to circle the nucleus in perfect integers. This defines the height of the orbits electrons can take.

Chapter 5 Elementary Particles and Forces of Nature (pp.63-79)

A chapter devoted to the story of how we’ve come to understand the world of sub-atomic particles. Starting (as usual) with Aristotle and then fast-forwarding through Galton, Einstein’s paper on Brownian motion, J.J. Thomson’s discovery of electrons, and, in 1911, Ernest Rutherford’s demonstration that atoms are made up of tiny positively charged nucleus around which a number of tiny positively charged particles, electrons, orbit. Rutherford thought the nuclei contained ‘protons’, which have a positive charge and balance out the negative charge of the electrons. In 1932 James Chadwick discovered the nucleus contains neutrons, same mass as the proton but no charge.

In 1965 quarks were discovered by Murray Gell-Mann. In fact scientists went on to discover six types, up, down, strange, charmed, bottom and top quarks. A proton or neutron is made up of three quarks.

He explains the quality of spin. Some particles have to be spin twice to return to their original appearance. They have spin 1/2. All the matter we can see in the universe has the spin 1/2. Particles of spin 0, 1, and 2 give rise to the forces between the particles.

Pauli’s exclusionary principle: two similar particles cannot exist in the same state, they cannot have the same position and the same velocity. The exclusionary principle is vital since it explains why the universe isn’t a big soup of primeval particles. The particles must be distinct and separate.

In 1928 Paul Dirac explained why the electron must rotate twice to return to its original position. He also predicted the existence of the positron to balance the electron. In 1932 the positron was discovered and Dirac was awarded a Nobel Prize.

Force carrying particles can be divided into four categories according to the strength of the force they carry and the particles with which they interact.

  1. Gravitational force, the weakest of the four forces by a long way.
  2. The electromagnetic force interacts with electrically charged particles like electrons and quarks.
  3. The weak nuclear force, responsible for radioactivity. In findings published in 1967 Abdus Salam and Steven Weinberg suggested that in addition to the photon there are three other spin-1 particles known collectively as massive vector bosons. Initially disbelieved, experiments proved them right and they collected the Nobel Prize in 1979. In 1983 the team at CERN proved the existence of the three particles, and the leaders of this team also won the Nobel Prize.
  4. The strong nuclear force holds quarks together in the proton and neutron, and holds the protons and neutrons together in the nucleus. This force is believed to be carried by another spin-1 particle, the gluon. They have a property named ‘confinement’ which is that you can’t have a quark of a single colour, the number of quarks bound together must cancel each other out.

The idea behind the search for a Grand Unified Theory is that, at high enough temperature, all the particles would behave in the same way, i.e. the laws governing the four forces would merge into one law.

Most of the matter on earth is made up of protons and neutrons, which are in turn made of quarks. Why is there this preponderance of quarks and not an equal number of anti-quarks?

Hawking introduces us to the notion that all the laws of physics obey three separate symmetries known as C, P and T. In 1956 two American physicists suggested that the weak force does not obey symmetry C. Hawking then goes on to explain more about the obedience or lack of obedience to the rules of symmetry of particles at very high temperatures, to explain why quarks and matter would outbalance anti-quarks and anti-matter at the big bang in a way which, frankly, I didn’t understand.

Chapter 6 Black Holes (pp.81-97)

In a sense, all the preceding has been just preparation, just a primer to help us understand the topic which Hawking spent the 1970s studying and which made his name – black holes.

The term black hole was coined by John Wheeler in 1969. Hawking explains the development of ideas about what happens when a star dies. When a star is burning, the radiation of energy in the forms of heat and light counteracts the gravity of its mass. When it runs out of fuel, gravity takes over and the star collapses in on itself. The young Indian physicist Subrahmanyan Chandrasekhar calculated that a cold star with a mass of more than one and a half times the mass of our sin would not be able to support itself against its own gravity and contract to become a ‘white dwarf’ with a radius of a few thousand miles and a density of hundreds of tones per square inch.

The Russian Lev Davidovich Landau speculated that the same sized star might end up in a different state. Chandrasekhar had used Pauli’s exclusionary principle as applied to electrons i.e. calculated the smallest densest state the mass could reach assuming no electron can be in the place of any other electron. Landau calculated on the basis of the exclusionary principle repulsion operative between neutrons and protons. Hence his model is known as the ‘neutron star’, which would have a radius of only ten miles or so and a density of hundreds of millions of tonnes per cubic inch.

(In an interesting aside Hawking tells us that physics was railroaded by the vast Manhattan Project to build an atomic bomb, and then to build a hydrogen bomb, throughout the 1940s and 50s. This tended to sideline large-scale physics about the universe. It was only the development of a) modern telescopes and b) computer power, that revived interest in astronomy.)

A black hole is what you get when the gravity of a collapsing star becomes so high that it prevents light from escaping its gravitational field. Hawking and Penrose showed that at the centre of a black hole must be a singularity of infinite density and space-time curvature.

In 1967 the study of black holes was revolutionised by Werner Israel. He showed that, according to general relativity, all non-rotating black holes must be very simple and perfectly symmetrical.

Hawking then explains several variations on this theory put forward by Roger Penrose, Roy Kerr, Brandon Carter who proved that a hole would have an axis of symmetry. Hawking himself confirmed this idea. In 1973 David Robinson proved that a black hole had to have ‘a Kerr solution’. In other words, no matter how they start out, all black holes end up looking the same, a belief summed up in the pithy phrase, ‘A black hole has no hair’.

What is striking about all this is that it was pure speculation, derived entirely from mathematical models without a shred of evidence from astronomy.

Black holes are one of only a fairly small number of cases in the history of science in which a theory was developed in great detail as a mathematical model before there was any evidence from observations that it was correct. (p.92)

Hawking then goes on to list the best evidence we have for black holes, which is surprisingly thin. Since they are by nature invisible black holes can only be deduced by their supposed affect on nearby stars or systems. Given that black holes were at the centre of Hawking’s career, and are the focus of these two chapters, it is striking that there is, even now, very little direct empirical evidence for their existence.

(Eerily, as I finished reading A Brief History of Time, the announcement was made on 10 April 2019 that the first ever image has been generated of a black hole –

Theory predicts that other stars which stray close to a black hole would have clouds of gas attracted towards it. As this matter falls into the black hole it will a) be stripped down to basic sub-atomic particles b) make the hole spin. Spinning would make the hole acquire a magnetic field. The magnetic field would shoot jets of particles out into space along the axis of rotation of the hole. These jets should be visible to our telescopes.

First ever image of a black hole, captured the Event Horizon Telescope (EHT). The hole is 40 billion km across, and 500 million trillion km away

Chapter 7 Black Holes Ain’t So Black (pp.99-113)

Black holes are not really black after all. They glow like a hot body, and the smaller they are, the hotter they glow. Again, Hawking shares with us the evolution of his thinking on this subject, for example how he was motivated in writing a 1971 paper about black holes and entropy at least partly in irritation against another researcher who he felt had misinterpreted his earlier results.

Anyway, it all resulted in his 1973 paper which showed that a black hole ought to emit particles and radiation as if it were a hot body with a temperature that depends only on the black hole’s mass.

The reasoning goes thus: quantum mechanics tells us that all of space is fizzing with particles and anti-particles popping into existence, cancelling each other out, and disappearing. At the border of the event horizon, particles and anti-particles will be popping into existence as everywhere else. But a proportion of the anti-particles in each pair will be sucked inside the event horizon, so that they cannot annihilate their partners, leaving the positive particles to ping off into space. Thus, black holes should emit a steady stream of radiation!

If black holes really are absorbing negative particles as described above, then their negative energy will result in negative mass, as per Einstein’s most famous equation, E = mc² which shows that the lower the energy, the lower the mass. In other words, if Hawking is correct about black holes emitting radiation, then black holes must be shrinking.

Gamma ray evidence suggests that there might be 300 black holes in every cubic light year of the universe. Hawking then goes on to estimate the odds of detecting a black hole a) in steady existence b) reaching its final state and blowing up. Alternatively we could look for flashes of light across the sky, since on entering the earth’s atmosphere gamma rays break up into pairs of electrons and positrons. No clear sightings have been made so far.

(Threaded throughout the chapter has been the notion that black holes might come in two types: one which resulted from the collapse of stars, as described above. And others which have been around since the start of the universe as a function of the irregularities of the big bang.)

Summary: Hawking ends this chapter by claiming that his ‘discovery’ that radiation can be emitted from black holes was ‘the first example of a prediction that depended in an essential way on both the great theories of this century, general relativity and quantum mechanics’. I.e. it is not only an interesting ‘discovery’ in its own right, but a pioneering example of synthesising the two theories.

Chapter 8 The Origin and Fate of the Universe (pp.115-141)

This is the longest chapter in the book and I found it the hardest to follow. I think this is because it is where he makes the big pitch for His Theory, for what’s come to be known as the Hartle-Hawking state. Let Wikipedia explain:

Hartle and Hawking suggest that if we could travel backwards in time towards the beginning of the Universe, we would note that quite near what might otherwise have been the beginning, time gives way to space such that at first there is only space and no time. Beginnings are entities that have to do with time; because time did not exist before the Big Bang, the concept of a beginning of the Universe is meaningless. According to the Hartle-Hawking proposal, the Universe has no origin as we would understand it: the Universe was a singularity in both space and time, pre-Big Bang. Thus, the Hartle–Hawking state Universe has no beginning, but it is not the steady state Universe of Hoyle; it simply has no initial boundaries in time or space. (Hartle-Hawking state Wikipedia article)

To get to this point Hawking begins by recapping the traditional view of the ‘hot big bang’, i.e. the almost instantaneous emergence of matter from a state of infinite mass, energy and density and temperature.

This is the view first put forward by Gamow and Alpher in 1948, which predicted there would still be very low-level background radiation left over from the bang – which was then proved with the discovery of the cosmic background radiation in 1965.

Hawking gives a picture of the complete cycle of the creation of the universe through the first generation of stars which go supernova blowing out into space the heavier particles which then go into second generation stars or clouds of gas and solidify into things like planet earth.

In a casual aside, he gives his version of the origin of life on earth:

The earth was initially very hot and without an atmosphere. In the course of time it cooled and acquired an atmosphere from the emission of gases from the rocks. This early atmosphere was not one in which we could have survived. It contained no oxygen, but a lot of other gases that are poisonous to us, such as hydrogen sulfide. There are, however, other primitive forms of life that can flourish under such conditions. It is thought that they developed in the oceans, possibly as a result of chance combinations of atoms into large structures, called macromolecules, which were capable of assembling other atoms in the ocean into similar structures. They would thus have reproduced themselves and multiplied. In some cases there would have been errors in the reproduction. Mostly these errors would have been such that the new macromolecule could not reproduce itself and eventually would have been destroyed. However, a few of the errors would have produced new macromolecules that were even better at reproducing themselves. They would have therefore had an advantage and would have tended to replace the original macromolecules. In this way a process of evolution was started that led to the development of more and more complicated, self-reproducing organisms. The first primitive forms of life consumed various materials, including hydrogen sulfide, and released oxygen. This gradually changed the atmosphere to the composition that it has today and allowed the development of higher forms of life such as fish, reptiles, mammals, and ultimately the human race. (p.121)

(It’s ironic that he discusses the issue so matter-of-factly, demonstrating that, for him at least, the matter is fairly cut and dried and not worth lingering over. Because, of course, for scientists who’ve devoted their lives to the origins-of-life question it is far from over. It’s a good example of the way that every specialist thinks that their specialism is the most important subject in the world, the subject that will finally answer the Great Questions of Life whereas a) most people have never heard about the issues b) wouldn’t understand them and c) don’t care.)

Hawking goes on to describe chaotic boundary conditions and describe the strong and the weak anthropic principles. He then explains the theory proposed by Alan Guth of inflation i.e. the universe, in the first milliseconds after the big bang, underwent a process of enormous hyper-growth, before calming down again to normal exponential expansion. Hawking describes it rather differently from Barrow and Davies. He emphasises that, to start with, in a state of hypertemperature and immense density, the four forces we know about and the spacetime dimensions were all fused into one. They would be in ‘symmetry’. Only as the early universe cooled would it have undergone a ‘phase transition’ and the symmetry between forces been broken.

If the temperature fell below the phase transition temperature without symmetry being broken then the universe would have a surplus of energy and it is this which would have cause the super-propulsion of the inflationary stage. The inflation theory:

  • would allow for light to pass from one end of the (tiny) universe to the other and explains why all regions of the universe appear to have the same properties
  • explain why the rate of expansion of the universe is close to the critical rate required to make it expand for billions of years (and us to evolve)
  • would explain why there is so much matter in the universe

Hawking then gets involved in the narrative explaining how he and others pointed out flaws in Guth’s inflationary model, namely that the phase transition at the end of the inflation ended in ‘bubble’s which expanded to join up. But Hawking and others pointed out that the bubbles were expanding so fat they could never join up. In 1981 the Russian Andre Linde proposed that the bubble problem would be solved if  a) the symmetry broke slowly and b) the bubbles were so big that our region of the universe is all contained within a single bubble. Hawking disagreed, saying Linde’s bubbles would each have to be bigger than the universe for the maths to work out, and counter-proposing that the symmetry broke everywhere at the same time, resulting in the uniform universe we see today. Nonetheless Linde’s model became known as the ‘new inflationary model’, although Hawking considers it invalid.

[In these pages we get a strong whiff of cordite. Hawking is describing controversies and debates he has been closely involved in and therefore takes a strongly partisan view, bending over backwards to be fair to colleagues, but nonetheless sticking to his guns. In this chapter you get a strong feeling for what controversy and debate within this community must feel like.)

Hawking prefers the ‘chaotic inflationary model’ put forward by Linde in 1983, in which there is no phase transition or supercooling, but which relies on quantum fluctuations.

At this point he introduces four ideas which are each challenging and which, taken together, mark the most difficult and confusing part of the book.

First he says that, since Einstein’s laws of relativity break down at the moment of the singularity, we can only hope to understand the earliest moments of the universe in terms of quantum mechanics.

Second, he says he’s going to use a particular formulation of quantum mechanics, namely Richard Feynman’s idea of ‘a sum over histories’. I think this means that Feynman said that in quantum mechanics we can never know precisely which route a particle takes, the best we can do is work out all the possible routes and assign them probabilities, which can then be handled mathematically.

Third, he immediately points out that working with Feynman’s sum over histories approach requires the use of ‘imaginary’ time, which he then goes on to explain.

To avoid the technical difficulties with Feynman’s sum over histories, one must use imaginary time. (p.134)

And then he points out that, in order to use imaginary time, we must use Euclidean space-time instead of ‘real’ space-time.

All this happens on page 134 and was too much for me to understand. On page 135 he then adds in Einstein’s idea that the gravitational field us represented by curved space-time.

It is now that he pulls all these ideas together to assert that, whereas in the classical theory of gravity, which is based on real space-time there are only two ways the universe can behave – either it has existed infinitely or it had a beginning in a singularity at a finite point in time; in the quantum theory of gravity, which uses Euclidean space-time, in which the time direction is on the same footing as directions in space it is possible:

for space-time to be finite in extent and yet to have no singularities that formed a boundary or edge.

In Hawking’s theory the universe would be finite in duration but not have a boundary in time because time would merge with the other three dimensions, all of which cease to exist during and just after a singularity. Working backwards in time, the universe shrinks but it doesn’t shrink, as a cone does, to a single distinct point – instead it has a smooth round bottom with no distinct beginning.

The Hartle-Hawking no boundary Hartle and Hawking No-Boundary Proposal

The Hartle-Hawking no boundary Hartle and Hawking No-Boundary Proposal

Finally Hawking points out that this model of a no-boundary universe derived from a Feynman interpretation of quantum gravity does not give rise to all possible universes, but only to a specific family of universes.

One aspect of these histories of the universe in imaginary time is that none of them include singularities – which would seem to render redundant all the work Hawking had done on black holes in ‘real time’. He gets round this by saying that both models can be valid, but in order to demonstrate different things.

It is simply a matter of which is the more useful description. (p.139)

He winds up the discussion by stating that further calculations based on this model explain the two or three key facts about the universe which all theories must explain i.e. the fact that it is clumped into lumps of matter and not an even soup, the fact that it is expanding, and the fact that the background radiation is minutely uneven in some places suggesting very early irregularities. Tick, tick, tick – the no-boundary proposal is congruent with all of them.

It is a little mind-boggling, as you reach the end of this long and difficult chapter, to reflect that absolutely all of it is pure speculation without a shred of evidence to support it. It is just another elegant way of dealing with the problems thrown up by existing observations and by trying to integrate quantum mechanics with Einsteinian relativity. But whether it is ‘true’ or not, not only is unproveable but also is not really the point.

Chapter 9 The Arrow of Time (pp.143-153)

If Einstein’s theory of general relativity is correct and light always appears to have the same velocity to all observers, no matter what position they’re in or how fast they’re moving, THEN TIME MUST BE FLEXIBLE. Time is not a fixed constant. Every observer carries their own time with them.

Hawking points out that there are three arrows of time:

  • the thermodynamic arrow of time which obeys the Second Law of Thermodynamics namely that entropy, or disorder, increases – there are always many more disordered states than ordered ones
  • the psychological arrow of time which we all perceive
  • the cosmological arrow of time, namely the universe is expanding and not contracting

Briskly, he tells us that the psychological arrow of time is based on the thermodynamic one: entropy increases and our lives experience that and our minds record it. For example, human beings consume food – which is a highly ordered form of energy – and convert it into heat – which is a highly disordered form.

Hawking tells us that he originally thought that, if the universe reach a furthest extent and started to contract, disorder (entropy) would decrease, and everything in the universe would happen backwards. Until Don Page and Raymond Laflamme, in their different ways, proved otherwise.

Now he believes that the contraction would not occur until the universe had been almost completely thinned out and all the stars had died i.e. the universe had become an even soup of basic particles. THEN it would start to contract. And so his current thinking is that there would be little or no thermodynamic arrow of time (all thermodynamic processes having come to an end) and all of this would be happening in a universe in which human beings could not exist. We will never live to see the contraction phase of the universe. If there is a contraction phase.

Chapter 10: The Unification of Physics (pp.155-169)

The general theory of relativity and quantum mechanics both work well for their respective scales (stars and galaxies, sub-atomic particles) but cannot be made to mesh, despite fifty of more years of valiant attempts. Many of the attempts produce infinity in their results, so many infinities that a strategy has been developed called ‘renormalisation’ which gets rid of the infinities, although Hawking conceded is ‘rather dubious mathematically’.

Grand Unified Theories is the term applied to attempts to devise a theory (i.e. a set of mathematical formulae) which will take account of the four big forces we know about: electromagnetism, gravity, the strong nuclear force and the weak nuclear force.

In the mid-1970s some scientists came up with the idea of ‘supergravity’ which postulated a ‘superparticle’, and the other sub-atomic particles variations on the super-particle but with different spins. According to Hawking the calculations necessary to assess this theory would take so long nobody has ever done it.

So he moves onto string theory i.e. the universe isn’t made up of particles but of open or closed ‘strings’, which can join together in different ways to form different particles. However, the problem with string theory is that, because of the mathematical way they are expressed, they require more than four dimensions. A lot more. Hawking mentions anywhere from ten up to 26 dimensions. Where are all these dimensions? Well, strong theory advocates say they exist but are very very small, effectively wrapped up into sub-atomic balls, so that you or I never notice them.

Rather simplistically, Hawking lists the possibilities about a complete unified theory. Either:

  1. there really is a grand unified theory which we will someday discover
  2. there is no ultimate theory but only an infinite sequence of possibilities which will describe the universe with greater and greater, but finite accuracy
  3. there is no theory of the universe at all, and events will always seems to us to occur in a random way

This leads him to repeat the highfalutin’ rhetoric which all physicists drop into at these moments, about the destiny of mankind etc. Discovery of One Grand Unified Theory:

would bring to an end a long and glorious chapter in the history of humanity’s intellectual struggle to understand the universe. But it would also revolutionise the ordinary person’s understanding of the laws that govern the universe. (p.167)

I profoundly disagree with this view. I think it is boilerplate, which is a phrase defined as ‘used in the media to refer to hackneyed or unoriginal writing’.

Because this is not just the kind of phrasing physicists use when referring to the search for GUTs, it’s the same language biologists use when referring to the quest to understand how life derived from inorganic chemicals, it’s the same language the defenders of the large Hadron Collider use to justify spending billions of euros on the search for ever-smaller particles, it’s the language used by the guys who want funding for the Search for Extra-Terrestrial Intelligence), it’s the kind of language used by the scientists bidding for funding for the Human Genome Project.

Each of these, their defenders claim, is the ultimate most important science project, quest and odyssey ever,  and when they find the solution it will for once and all answer the Great Questions which have been tormenting mankind for millennia. Etc. Which is very like all the world’s religions claiming that their God is the only God. So a) there is a pretty obvious clash between all these scientific specialities which each claim to be on the brink of revealing the Great Secret.

But b) what reading this book and John Barrow’s Book of Universes convinces me is that i) we are very far indeed from coming even close to a unified theory of the universe and more importantly ii) if one is ever discovered, it won’t matter.

Imagine for a moment that a new iteration of string theory does manage to harmonise the equations of general relativity and quantum mechanics. How many people in the world are really going to be able to understand that? How many people now, currently, have a really complete grasp of Einsteinian relativity and Heisenbergian quantum uncertainty in their strictest, most mathematical forms? 10,000? 1000,000 earthlings?

If and when the final announcement is made who would notice, who would care, and why would they care? If the final conjunction is made by adapting string theory to 24 dimensions and renormalising all the infinities in order to achieve a multi-dimensional vision of space-time which incorporates both the curvature of gravity and the unpredictable behaviour of sub-atomic particles – would this really

revolutionise the ordinary person’s understanding of the laws that govern the universe?

Chapter 11 Conclusion (pp.171-175)

Recaps the book and asserts that his and James Hartle’s no-boundary model for the origin of the universe is the first to combine classic relativity with Heisenberg uncertainty. Ends with another rhetorical flourish of trumpets which I profoundly disagree with for the reasons given above.

If we do discover a complete theory, it should in time be understandable in broad principle by everyone, not just a few scientists. Then we shall all, philosophers, scientists, and just ordinary people, be able to take part in the discussion of the question of why it is that we and the universe exist. If we find the answer to that, it would be the ultimate triumph of human reason. (p.175)

Maybe I’m wrong, but I think this is a hopelessly naive view of human nature and culture. Einstein’s general theory has been around for 104 years, quantum mechanics for 90 years. Even highly educated people understand neither of them, and what Hawking calls ‘just ordinary people’ certainly don’t – and it doesn’t matter. 

Thoughts

Of course the subject matter is difficult to understand, but Hawking makes a very good fist of putting all the ideas into simple words and phrases, avoiding all formulae and equations, and the diagrams help a lot.

My understanding is that A Brief History of Time was the first popular science to put all these ideas before the public in a reasonably accessible way, and so opened the floodgates for countless other science writers, although hardly any of the ideas in it felt new to me since I happen to have just reread the physics books by Barrow and Davies which cover much the same ground and are more up to date.

But my biggest overall impression is how provisional so much of it seems. You struggle through the two challenging chapters about black holes – Hawking’s speciality – and then are casually told that all this debating and arguing over different theories and model-making had gone on before any black holes were ever observed by astronomers. In fact, even when Hawking died, in 2018, no black holes had been conclusively identified. It’s a big shame he didn’t live to see this famous photograph being published and confirmation of at least the existence of the entity he devoted so much time to theorising about.


Related links

Reviews of other science books

Cosmology

The environment

Human evolution

Genetics and life

  • What Is Life? How Chemistry Becomes Biology by Addy Pross (2012)
  • The Diversity of Life by Edward O. Wilson (1992)
  • The Double Helix by James Watson (1968)

Maths

Particle physics

Psychology

The Book of Universes by John D. Barrow (2011)

This book is twice as long and half as good as Barrow’s earlier primer, The Origin of the Universe.

In that short book Barrow focused on the key ideas of modern cosmology – introducing them to us in ascending order of complexity, and as simply as possible. He managed to make mind-boggling ideas and demanding physics very accessible.

This book – although it presumably has the merit of being more up to date (published in 2011 as against 1994) – is an expansion of the earlier one, an attempt to be much more comprehensive, but which, in the process, tends to make the whole subject more confusing.

The basic premise of both books is that, since Einstein’s theory of relativity was developed in the 1910s, cosmologists and astronomers and astrophysicists have:

  1. shown that the mathematical formulae in which Einstein’s theories are described need not be restricted to the universe as it has traditionally been conceived; in fact they can apply just as effectively to a wide variety of theoretical universes – and the professionals have, for the past hundred years, developed a bewildering array of possible universes to test Einstein’s insights to the limit
  2. made a series of discoveries about our actual universe, the most important of which is that a) it is expanding b) it probably originated in a big bang about 14 billion years ago, and c) in the first few milliseconds after the bang it probably underwent a period of super-accelerated expansion known as the ‘inflation’ which may, or may not, have introduced all kinds of irregularities into ‘our’ universe, and may even have created a multitude of other universes, of which ours is just one

If you combine a hundred years of theorising with a hundred years of observations, you come up with thousands of theories and models.

In The Origin of the Universe Barrow stuck to the core story, explaining just as much of each theory as is necessary to help the reader – if not understand – then at least grasp their significance. I can write the paragraphs above because of the clarity with which The Origin of the Universe explained it.

In The Book of Universes, on the other hand, Barrow’s aim is much more comprehensive and digressive. He is setting out to list and describe every single model and theory of the universe which has been created in the past century.

He introduces the description of each model with a thumbnail sketch of its inventor. This ought to help, but it doesn’t because the inventors generally turn out to be polymaths who also made major contributions to all kinds of other areas of science. Being told a list of Paul Dirac’s other major contributions to 20th century science is not a good way for preparing your mind to then try and understand his one intervention on universe-modelling (which turned, in any case, out to be impractical and lead nowhere).

Another drawback of the ‘comprehensive’ approach is that a lot of these models have been rejected or barely saw the light of day before being disproved or – more complicatedly – were initially disproved but contained aspects or insights which turned out to be useful forty years later, and were subsequently recycled into revised models. It gets a bit challenging to try and hold all this in your mind.

In The Origin of the Universe Barrow sticks to what you could call the canonical line of models, each of which represented the central line of speculation, even if some ended up being disproved (like Hoyle and Gold and Bondi’s model of the steady state universe). Given that all of this material is pretty mind-bending, and some of it can only be described in advanced mathematical formulae, less is definitely more. I found The Book of Universes simply had too many universes, explained too quickly, and lost amid a lot of biographical bumpf summarising people’s careers or who knew who or contributed to who’s theory. Too much information.

One last drawback of the comprehensive approach is that quite important points – which are given space to breathe and sink in in The Origin of the Universe are lost in the flood of facts in The Book of Universes.

I’m particularly thinking of Einstein’s notion of the cosmological constant which was not strictly necessary to his formulations of relativity, but which Einstein invented and put into them solely in order to counteract the force of gravity and ensure his equations reflected the commonly held view that the universe was in a permanent steady state.

This was a mistake and Einstein is often quoted as admitting it was the biggest mistake of his career. In 1965 scientists discovered the cosmic background radiation which proved that the universe began in an inconceivably intense explosion, that the universe was therefore expanding and that the explosive, outward-propelling force of this bang was enough to counteract the contracting force of the gravity of all the matter in the universe without any need for a hypothetical cosmological constant.

I understand this (if I do) because in The Origin of the Universe it is given prominence and carefully explained. By contrast, in The Book of Universes it was almost lost in the flood of information and it was only because I’d read the earlier book that I grasped its importance.

The Book of Universes

Barrow gives a brisk recap of cosmology from the Sumerians and Egyptians, through the ancient Greeks’ establishment of the system named after Ptolemy in which the earth is the centre of the solar system, on through the revisions of Copernicus and Galileo which placed the sun firmly at the centre of the solar system, on to the three laws of Isaac Newton which showed how the forces which govern the solar system (and more distant bodies) operate.

There is then a passage on the models of the universe generated by the growing understanding of heat and energy acquired by Victorian physicists, which led to one of the most powerful models of the universe, the ‘heat death’ model popularised by Lord Kelvin in the 1850s, in which, in the far future, the universe evolves to a state of complete homegeneity, where no region is hotter than any other and therefore there is no thermodynamic activity, no life, just a low buzzing noise everywhere.

But this is all happens in the first 50 pages and is just preliminary throat-clearing before Barrow gets to the weird and wonderful worlds envisioned by modern cosmology i.e. from Einstein onwards.

In some of these models the universe expands indefinitely, in others it will reach a peak expansion before contracting back towards a Big Crunch. Some models envision a static universe, in others it rotates like a top, while other models are totally chaotic without any rules or order.

Some universes are smooth and regular, others characterised by clumps and lumps. Some are shaken by cosmic tides, some oscillate. Some allow time travel into the past, while others threaten to allow an infinite number of things to happen in a finite period. Some end with another big bang, some don’t end at all. And in only a few of them do the conditions arise for intelligent life to evolve.

The Book of Universes then goes on, in 12 chapters, to discuss – by my count – getting on for a hundred types or models of hypothetical universes, as conceived and worked out by mathematicians, physicists, astrophysicists and cosmologists from Einstein’s time right up to the date of publication, 2011.

A list of names

Barrow namechecks and briefly explains the models of the universe developed by the following (I am undertaking this exercise partly to remind myself of everyone mentioned, partly to indicate to you the overwhelming number of names and ideas the reader is bombarded with):

  • Aristotle
  • Ptolemy
  • Copernicus
  • Giovanni Riccioli
  • Tycho Brahe
  • Isaac Newton
  • Thomas Wright (1771-86)
  • Immanuel Kant (1724-1804)
  • Pierre Laplace (1749-1827) devised what became the standard Victorian model of the universe
  • Alfred Russel Wallace (1823-1913) discussed the physical conditions of a universe necessary for life to evolve in it
  • Lord Kelvin (1824-1907) material falls into the central region of the universe and coalesce with other stars to maintain power output over immense periods
  • Rudolf Clausius (1822-88) coined the word ‘entropy’ in 1865 to describe the inevitable progress from ordered to disordered states
  • William Jevons (1835-82) believed the second law of thermodynamics implies that universe must have had a beginning
  • Pierre Duhem (1961-1916) Catholic physicist accepted the notion of entropy but denied that it implied the universe ever had a beginning
  • Samuel Tolver Preson (1844-1917) English engineer and physicist, suggested the universe is so vast that different ‘patches’ might experience different rates of entropy
  • Ludwig Boltzmann and Ernst Zermelo suggested the universe is infinite and is already in a state of thermal equilibrium, but just with random fluctuations away from uniformity, and our galaxy is one of those fluctuations
  • Albert Einstein (1879-1955) his discoveries were based on insights, not maths: thus he saw the problem with Newtonian physics is that it privileges an objective outside observer of all the events in the universe; one of Einstein’s insights was to abolish the idea of a privileged point of view and emphasise that everyone is involved in the universe’s dynamic interactions; thus gravity does not pass through a clear, fixed thing called space; gravity bends space.

The American physicist John Wheeler once encapsulated Einstein’s theory in two sentences:

Matter tells space how to curve. Space tells matter how to move. (quoted on page 52)

  • Marcel Grossmann provided the mathematical underpinning for Einstein’s insights
  • Willem de Sitter (1872-1934) inventor of, among other things, the de Sitter effect which represents the effect of the curvature of spacetime, as predicted by general relativity, on a vector carried along with an orbiting body – de Sitter’s universe gets bigger and bigger for ever but never had a zero point; but then de Sitter’s model contains no matter
  • Vesto Slipher (1875-1969) astronomer who discovered the red shifting of distant galaxies in 1912, the first ever empirical evidence for the expansion of the galaxy
  • Alexander Friedmann (1888-1925) Russian mathematician who produced purely mathematical solutions to Einstein’s equation, devising models where the universe started out of nothing and expanded a) fast enough to escape the gravity exerted by its own contents and so will expand forever or b) will eventually succumb to the gravity of its own contents, stop expanding and contract back towards a big crunch. He also speculated that this process (expansion and contraction) could happen an infinite number of times, creating a cyclic series of bangs, expansions and contractions, then another bang etc
A graphic of the oscillating or cyclic universe (from Discovery magazine)

A graphic of the oscillating or cyclic universe (from Discovery magazine)

  • Arthur Eddington (1882-1944) most distinguished astrophysicist of the 1920s
  • George Lemaître (1894-1966) first to combine an expanding universe interpretation of Einstein’s equations with the latest data about redshifting, and show that the universe of Einstein’s equations would be very sensitive to small changes – his model is close to Eddington’s so that it is often called the Eddington-Lemaître universe: it is expanding, curved and finite but doesn’t have a beginning
  • Edwin Hubble (1889-1953) provided solid evidence of the redshifting (moving away) of distant galaxies, a main plank in the whole theory of a big bang, inventor of Hubble’s Law:
    • Objects observed in deep space – extragalactic space, 10 megaparsecs (Mpc) or more – are found to have a redshift, interpreted as a relative velocity away from Earth
    • This Doppler shift-measured velocity of various galaxies receding from the Earth is approximately proportional to their distance from the Earth for galaxies up to a few hundred megaparsecs away
  • Richard Tolman (1881-1948) took Friedmann’s idea of an oscillating universe and showed that the increased entropy of each universe would accumulate, meaning that each successive ‘bounce’ would get bigger; he also investigated what ‘lumpy’ universes would look like where matter is not evenly spaced but clumped: some parts of the universe might reach a maximum and start contracting while others wouldn’t; some parts might have had a big bang origin, others might not have
  • Arthur Milne (1896-1950) showed that the tension between the outward exploding force posited by Einstein’s cosmological constant and the gravitational contraction could actually be described using just Newtonian mathematics: ‘Milne’s universe is the simplest possible universe with the assumption that the universe s uniform in space and isotropic’, a ‘rational’ and consistent geometry of space – Milne labelled the assumption of Einsteinian physics that the universe is the same in all places the Cosmological Principle
  • Edmund Fournier d’Albe (1868-1933) posited that the universe has a hierarchical structure from atoms to the solar system and beyond
  • Carl Charlier (1862-1934) introduced a mathematical description of a never-ending hierarchy of clusters
  • Karl Schwarzschild (1873-1916) suggested  that the geometry of the universe is not flat as Euclid had taught, but might be curved as in the non-Euclidean geometries developed by mathematicians Riemann, Gauss, Bolyai and Lobachevski in the early 19th century
  • Franz Selety (1893-1933) devised a model for an infinitely large hierarchical universe which contained an infinite mass of clustered stars filling the whole of space, yet with a zero average density and no special centre
  • Edward Kasner (1878-1955) a mathematician interested solely in finding mathematical solutions to Einstein’s equations, Kasner came up with a new idea, that the universe might expand at different rates in different directions, in some parts it might shrink, changing shape to look like a vast pancake
  • Paul Dirac (1902-84) developed a Large Number Hypothesis that the really large numbers which are taken as constants in Einstein’s and other astrophysics equations are linked at a deep undiscovered level, among other things abandoning the idea that gravity is a constant: soon disproved
  • Pascual Jordan (1902-80) suggested a slight variation of Einstein’s theory which accounted for a varying constant of gravitation as through it were a new source of energy and gravitation
  • Robert Dicke (1916-97) developed an alternative theory of gravitation
  • Nathan Rosen (1909-995) young assistant to Einstein in America with whom he authored a paper in 1936 describing a universe which expands but has the symmetry of a cylinder, a theory which predicted the universe would be washed over by gravitational waves
  • Ernst Straus (1922-83) another young assistant to Einstein with whom he developed a new model, an expanding universe like those of Friedman and Lemaître but which had spherical holes removed like the bubbles in an Aero, each hole with a mass at its centre equal to the matter which had been excavated to create the hole
  • Eugene Lifschitz (1915-85) in 1946 showed that very small differences in the uniformity of matter in the early universe would tend to increase, an explanation of how the clumpy universe we live in evolved from an almost but not quite uniform distribution of matter – as we have come to understand that something like this did happen, Lifshitz’s calculations have come to be seen as a landmark
  • Kurt Gödel (1906-1978) posited a rotating universe which didn’t expand and, in theory, permitted time travel!
  • Hermann Bondi, Thomas Gold and Fred Hoyle collaborated on the steady state theory of a universe which is growing but remains essentially the same, fed by the creation of new matter out of nothing
  • George Gamow (1904-68)
  • Ralph Alpher and Robert Herman in 1948 showed that the ratio of the matter density of the universe to the cube of the temperature of any heat radiation present from its hot beginning is constant if the expansion is uniform and isotropic – they calculated the current radiation temperature should be 5 degrees Kelvin – ‘one of the most momentous predictions ever made in science’
  • Abraham Taub (1911-99) made a study of all the universes that are the same everywhere in space but can expand at different rates in different directions
  • Charles Misner (b.1932) suggested ‘chaotic cosmology’ i.e. that no matter how chaotic the starting conditions, Einstein’s equations prove that any universe will inevitably become homogenous and isotropic – disproved by the smoothness of the background radiation. Misner then suggested the Mixmaster universe, the  most complicated interpretation of the Einstein equations in which the universe expands at different rates in different directions and the gravitational waves generated by one direction interferes with all the others, with infinite complexity
  • Hannes Alfvén devised a matter-antimatter cosmology
  • Alan Guth (b.1947) in 1981 proposed a theory of ‘inflation’, that milliseconds after the big bang the universe underwent a swift process of hyper-expansion: inflation answers at a stroke a number of technical problems prompted by conventional big bang theory; but had the unforeseen implication that, though our region is smooth, parts of the universe beyond our light horizon might have grown from other areas of inflated singularity and have completely different qualities
  • Andrei Linde (b.1948) extrapolated that the inflationary regions might create sub-regions in  which further inflation might take place, so that a potentially infinite series of new universes spawn new universes in an ‘endlessly bifurcating multiverse’. We happen to be living in one of these bubbles which has lasted long enough for the heavy elements and therefore life to develop; who knows what’s happening in the other bubbles?
  • Ted Harrison (1919-2007) British cosmologist speculated that super-intelligent life forms might be able to develop and control baby universe, guiding the process of inflation so as to promote the constants require for just the right speed of growth to allow stars, planets and life forms to evolve. Maybe they’ve done it already. Maybe we are the result of their experiments.
  • Nick Bostrom (b.1973) Swedish philosopher: if universes can be created and developed like this then they will proliferate until the odds are that we are living in a ‘created’ universe and, maybe, are ourselves simulations in a kind of multiverse computer simulation

Although the arrival of Einstein and his theory of relativity marks a decisive break with the tradition of Newtonian physics, and comes at page 47 of this 300-page book, it seemed to me the really decisive break comes on page 198 with the publication Alan Guth’s theory of inflation.

Up till the Guth breakthrough, astrophysicists and astronomers appear to have focused their energy on the universe we inhabit. There were theoretical digressions into fantasies about other worlds and alternative universes but they appear to have been personal foibles and everyone agreed they were diversions from the main story.

However, the idea of inflation, while it solved half a dozen problems caused by the idea of a big bang, seems to have spawned a literally fantastic series of theories and speculations.

Throughout the twentieth century, cosmologists grew used to studying the different types of universe that emerged from Einstein’s equations, but they expected that some special principle, or starting state, would pick out one that best described the actual universe. Now, unexpectedly, we find that there might be room for many, perhaps all, of these possible universes somewhere in the multiverse. (p.254)

This is a really massive shift and it is marked by a shift in the tone and approach of Barrow’s book. Up till this point it had jogged along at a brisk rate namechecking a steady stream of mathematicians, physicists and explaining how their successive models of the universe followed on from or varied from each other.

Now this procedure comes to a grinding halt while Barrow enters a realm of speculation. He discusses the notion that the universe we live in might be a fake, evolved from a long sequence of fakes, created and moulded by super-intelligences for their own purposes.

Each of us might be mannequins acting out experiments, observed by these super-intelligences. In which case what value would human life have? What would be the definition of free will?

Maybe the discrepancies we observe in some of the laws of the universe have been planted there as clues by higher intelligences? Or maybe, over vast periods of time, and countless iterations of new universes, the laws they first created for this universe where living intelligences could evolve have slipped, revealing the fact that the whole thing is a facade.

These super-intelligences would, of course, have computers and technology far in advance of ours etc. I felt like I had wandered into a prose version of The Matrix and, indeed, Barrow apologises for straying into areas normally associated with science fiction (p.241).

Imagine living in a universe where nothing is original. Everything is a fake. No ideas are ever new. There is no novelty, no originality. Nothing is ever done for the first time and nothing will ever be done for the last time… (p.244)

And so on. During this 15-page-long fantasy the handy sequence of physicists comes to an end as he introduces us to contemporary philosophers and ethicists who are paid to think about the problem of being a simulated being inside a simulated reality.

Take Robin Hanson (b.1959), a research associate at the Future of Humanity Institute of Oxford University who, apparently, advises us all that we ought to behave so as to prolong our existence in the simulation or, hopefully, ensure we get recreated in future iterations of the simulation.

Are these people mad? I felt like I’d been transported into an episode of The Outer Limits or was back with my schoolfriend Paul, lying in a summer field getting stoned and wondering whether dandelions were a form of alien life that were just biding their time till they could take over the world. Why not, man?

I suppose Barrow has to include this material, and explain the nature of the anthropic principle (p.250), and go on to a digression about the search for extra-terrestrial life (p.248), and discuss the ‘replication paradox’ (in an infinite universe there will be infinite copies of you and me in which we perform an infinite number of variations on our lives: what would happen if you came face to face with one of your ‘copies?? p.246) – because these are, in their way, theories – if very fantastical theories – about the nature of the universe and he his stated aim is to be completely comprehensive.

The anthropic principle Observations of the universe must be compatible with the conscious and intelligent life that observes it. The universe is the way it is, because it has to be the way it is in order for life forms like us to evolve enough to understand it.

Still, it was a relief when he returned from vague and diffuse philosophical speculation to the more solid territory of specific physical theories for the last forty or so pages of the book. But it was very noticeable that, as he came up to date, the theories were less and less attached to individuals: modern research is carried out by large groups. And he increasingly is describing the swirl of ideas in which cosmologists work, which often don’t have or need specific names attached. And this change is denoted, in the texture of the prose, by an increase in the passive voice, the voice in which science papers are written: ‘it was observed that…’, ‘it was expected that…’, and so on.

  • Edward Tryon (b.1940) American particle physicist speculated that the entire universe might be a virtual fluctuation from the quantum vacuum, governed by the Heisenberg Uncertainty Principle that limits our simultaneous knowledge of the position and momentum, or the time of occurrence and energy, of anything in Nature.
  • George Ellis (b.1939) created a catalogue of ‘topologies’ or shapes which the universe might have
  • Dmitri Sokolov and Victor Shvartsman in 1974 worked out what the practical results would be for astronomers if we lived in a strange shaped universe, for example a vast doughnut shape
  • Yakob Zeldovich and Andrei Starobinsky in 1984 further explored the likelihood of various types of ‘wraparound’ universes, predicting the fluctuations in the cosmic background radiation which might confirm such a shape
  • 1967 the Wheeler-De Witt equation – a first attempt to combine Einstein’s equations of general relativity with the Schrödinger equation that describes how the quantum wave function changes with space and time
  • the ‘no boundary’ proposal – in 1982 Stephen Hawking and James Hartle used ‘an elegant formulation of quantum  mechanics introduced by Richard Feynman to calculate the probability that the universe would be found to be in a particular state. What is interesting is that in this theory time is not important; time is a quality that emerges only when the universe is big enough for quantum effects to become negligible; the universe doesn’t technically have a beginning because the nearer you approach to it, time disappears, becoming part of four-dimensional space. This ‘no boundary’ state is the centrepiece of Hawking’s bestselling book A Brief History of Time (1988). According to Barrow, the Hartle-Hawking model was eventually shown to lead to a universe that was infinitely large and empty i.e. not our one.
The Hartle-Hawking no boundary Hartle and Hawking No-Boundary Proposal

The Hartle-Hawking no boundary Hartle and Hawking No-Boundary Proposal

  • In 1986 Barrow proposed a universe with a past but no beginning because all the paths through time and space would be very large closed loops
  • In 1997 Richard Gott and Li-Xin Li took the eternal inflationary universe postulated above and speculated that some of the branches loop back on themselves, giving birth to themselves
The self-creating universe of J.Richard Gott III and Li-Xin Li

The self-creating universe of J.Richard Gott III and Li-Xin Li

  • In 2001 Justin Khoury, Burt Ovrut, Paul Steinhardt and Neil Turok proposed a variation of the cyclic universe which incorporated strong theory and they called the ‘ekpyrotic’ universe, epkyrotic denoting the fiery flame into which each universe plunges only to be born again in a big bang. The new idea they introduced is that two three-dimensional universes may approach each other by moving through the additional dimensions posited by strong theory. When they collide they set off another big bang. These 3-D universes are called ‘braneworlds’, short for membrane, because they will be very thin
  • If a universe existing in a ‘bubble’ in another dimension ‘close’ to ours had ever impacted on our universe, some calculations indicate it would leave marks in the cosmic background radiation, a stripey effect.
  • In 1998 Andy Albrecht, João Maguijo and Barrow explored what might have happened if the speed of light, the most famous of cosmological constants, had in fact decreased in the first few milliseconds after the bang? There is now an entire suite of theories known as ‘Varying Speed of Light’ cosmologies.
  • Modern ‘String Theory’ only functions if it assumes quite a few more dimensions than the three we are used to. In fact some string theories require there to be more than one dimension of time. If there are really ten or 11 dimensions then, possibly, the ‘constants’ all physicists have taken for granted are only partial aspects of constants which exist in higher dimensions. Possibly, they might change, effectively undermining all of physics.
  • The Lambda-CDM model is a cosmological model in which the universe contains three major components: 1. a cosmological constant denoted by Lambda (Greek Λ) and associated with dark energy; 2. the postulated cold dark matter (abbreviated CDM); 3. ordinary matter. It is frequently referred to as the standard model of Big Bang cosmology because it is the simplest model that provides a reasonably good account of the following properties of the cosmos:
    • the existence and structure of the cosmic microwave background
    • the large-scale structure in the distribution of galaxies
    • the abundances of hydrogen (including deuterium), helium, and lithium
    • the accelerating expansion of the universe observed in the light from distant galaxies and supernovae

He ends with a summary of our existing knowledge, and indicates the deep puzzles which remain, not least the true nature of the ‘dark matter’ which is required to make sense of the expanding universe model. And he ends the whole book with a pithy soundbite. Speaking about the ongoing acceptance of models which posit a ‘multiverse’, in which all manner of other universes may be in existence, but beyond the horizon of where can see, he says:

Copernicus taught us that our planet was not at the centre of the universe. Now we may have to accept that even our universe is not at the centre of the Universe.


Related links

Reviews of other science books

Cosmology

The environment

Human evolution

Genetics

  • The Double Helix by James Watson (1968)

Maths

Particle physics

Psychology

The Origin of the Universe by John D. Barrow (1994)

In the beginning, the universe was an inferno of radiation, too hot for any atoms to survive. In the first few minutes, it cooled enough for the nuclei of the lighter elements to form. Only millions of years later would the cosmos be cool enough for whole atoms to appear, followed soon by simple molecules, and after billions of years by the complex sequence of events that saw the condensation of material into stars and galaxies. Then, with the appearance of stable planetary environments, the complicated products of biochemistry were nurtured, by processes we still do not understand. (The Origin of the Universe, p.xi)

In the late 1980s and into the 1990s science writing became fashionable and popular. A new generation of science writers poured forth a wave of books popularising all aspects of science. The ones I remember fell into two broad categories, evolution and astrophysics. Authors such as Stephen Jay Gould and Edward O. Wilson, Richard Dawkins and Steve Jones (evolution and genetics) and Paul Davies, John Gribbin, John Polkinghorne and, most famously of all, Stephen Hawking, (cosmology and astrophysics) not only wrote best-selling books but cropped up as guests on radio shows and even presented their own TV series.

Early in the 1990s the literary agent John Brockman created a series titled Science Masters in which he commissioned experts across a wide range of the sciences to write short, jargon-free and maths-light introductions to their fields.

This is astrophysicist John D. Barrow’s contribution to the series, a short, clear and mind-blowing introduction to current theory about how our universe began.

The Origin of the Universe

Billions It is now thought the universe is about 13.7 billion years old, the solar system is 4.57 billion years old and the earth is 4.54 billion years old. The oldest surface rocks anywhere on earth are in northwestern Canada near the Great Slave Lake, and are 4.03 billion years. The oldest fossilised bacteria date from 3.48 billion years ago.

Visible universe The visible universe is the part of the universe which light has had time to cross and reach us. If the universe is indeed 13.7 billion years old, and nothing can travel faster than the speed of light (299,792,458 metres per second) then there is, in effect, a ‘horizon’ to what we can see. We can only see the part of the universe which is about 13.7 billion years old. Whether there is any universe beyond our light horizon, and what it looks like, is something we can only speculate about.

Steady state Until the early 20th century philosophers and scientists thought the universe was fixed, static and stable. Even Einstein put into his theory of relativity a factor he named ‘the cosmological constant’, which wasn’t strictly needed, solely in order to make the universe appear static and so conform to contemporary thinking. The idea of this constant was to counteract the attractive force of gravity, in order to ensure his steady state version of the universe didn’t collapse into a big crunch.

Alexander Friedmann It was a young mathematician, Alexander Friedmann, who looked closely at Einstein’s formulae and showed that the cosmological constant was not necessary, not if the universe was expanding; in this case, no hypothetical repelling force would be needed, just the sheer speed of outward expansion. Einstein eventually conceded that including the constant in the formulae of relativity had been a major mistake.

Edwin Hubble In what Barrow calls ‘the greatest discovery of twentieth century science’, the American astronomer Edwin Hubble in the 1920s discovered that distant galaxies are moving away from us, and the further away they are, the faster they are moving, which became known as Hubble’s Law. He established this by noticing the ‘red-shifting’ of frequencies denoting detectable elements in these galaxies i.e. their light frequencies had been altered downwards, as light (and sound and all waves are) when something is moving away from the observer.

Critical divide An argument against the steady-state theory of the universe is that, over time, the gravity of all the objects in it would pull everything together and it would all collapse into one massive clump. Only an initial throwing out of material could counter-act the affect of all that gravity.

So how fast is the universe expanding? Imagine a rate, x. Below that speed, the effect of gravity will eventually overcome the outward acceleration, the universe will slow down, stop expanding and start to contract. Significantly above this speed, x, and the universe would continue flying apart in all directions so quickly that gas clouds, stars, galaxies and planets would never be formed.

As far as we know, the actual acceleration of the universe hovers just around this rate, x – just fast enough to prevent the universe from collapsing, but not too fast for it to be impossible for matter to form. Just the right speed to create the kind of universe we see around us. The name for this threshold is the critical divide.

Starstuff Stars are condensations of matter large enough to create at their centre nuclear reactions. These reactions burn hydrogen into helium for a long, sedate period, as our sun is doing. At the end of their lives stars undergo a crisis, an explosive period of rapid change during which helium is transformed into carbon nitrogen, oxygen, silicon, phosphorus and many of the other, heavier elements. When the ailing star finally explodes as a supernova these elements disperse into space and ultimately find their way into clouds of gas which condense as planets.

Thus every plant, animal and person alive on earth is made out of chemical elements forged in the unthinkable heat of dying stars – which is what Joni Mitchell meant when she sang, ‘We are stardust’.

Heat death A theory that the universe will continue expanding and matter become so attenuated that there are no heat or dynamic inequalities left to fuel thermal reactions i.e. matter ends up smoothly spread throughout space with no reactions happening anywhere. Thermodynamic equilibrium reached at a universal very low temperature. The idea was formulated by William Thomson, Lord Kelvin, in the 1850s who extrapolated from Victorian knowledge of mechanics and heat. 170 years later, updated versions of heat death remain a viable theory for the very long-term future of the universe.

Steady state The ‘steady state’ theory of the universe was developed by astrophysicists Thomas Gold, Hermann Bondi and Fred Hoyle in 1948. They theorised that. although the universe appeared to be expanding it had always existed, the expansion being caused by a steady rate of creation of new matter. This theory was disproved in the mid-1960s by the confirmation of background radiation

Background radiation theorised In the 1940s George Gamow and assistants Alpher and Herman theorised that, if the universe began in a hot dense state way back, there should be evidence, namely a constant layer of background radiation everywhere which, they calculated, would be 5 degrees above absolute zero.

Background radiation proved In the 1960s researchers at Bell Laboratories, calibrating a sensitive radio antenna, noticed a constant background interference to their efforts which seemed to be coming from every direction of the sky. A team from Princeton interpreted this as the expected background radiation and measured it at 2.5 degrees Kelvin. It is called ‘cosmic microwave background radiation’ and is one of the strong proofs for the Big Bang theory. The uniformity of the background radiation was confirmed by observations from NASA’s Cosmic Background Explorer satellite in the early 1990s.

Empty universe There is very little material in the universe. If all the stars and galaxies in the universe were smoothed out into a sea of atoms, there would only be about one atom per cubic meter of space.

Inflation This is a theory developed in 1979 by theoretical physicist Alan Guth – the idea is that the universe didn’t arise from a singularity which exploded and grew at a steady state but instead, in the first milliseconds, underwent a period of hyper-growth, which then calmed back down to ‘normal’ expansion.

The theory has been elaborated and generated numerous variants but is widely accepted because it explains many aspects of the universe we see today – from its large-scale structure to the way it explains how minute quantum fluctuations in this initial microscopic inflationary region, once magnified to cosmic size, became the seeds for the growth of structure in the Universe.

The inflation is currently thought to have taken place from 10−36 seconds after the conjectured Big Bang singularity to sometime between 10−33 or 10−32 seconds after.

Chaotic inflationary universe Proposed by Soviet physicist Andrei Linde in 1983, this is the idea that multiple distinct sections of the very early universe might have experienced inflation at different rates and so have produced a kind of cluster of universes, like bubbles in a bubble bath, except that these bubbles would have to be at least nine billion light years in size in order to produce stable stars. Possibly the conditions in each of the universes created by chaotic inflation could be quite different.

Eternal inflation A logical extension of chaotic inflation is that you not only have multiple regions which undergo inflation at the same time, but you might have sub-regions which undergo inflation at different times – possibly one after the other, in other words maybe there never was a beginning, but this process of successive creations and hyper-inflations has been going on forever and is still going on but beyond our light horizon (which, as mentioned above, only reaches to about 13.7 billion light years away).

Time Is time a fixed and static quality which creates a kind of theatre, an external frame of reference, in which the events of the universe take place, as in the Newtonian view? Or, as per Einstein, is time itself part of the universe, inseparable from the stuff of the universe and can be bent and distorted by forces in the universe? This is why Einstein used the expression ‘spacetime’?

The quantum universe Right back at the very beginning, at 10−43 seconds, the size of the visible universe was smaller than its quantum wavelength — so its entire contents would have been subject to the uncertainty which is the characteristic of quantum physics.

Time is affected by a quantum view of the big bang because, when the universe was still shrunk to a microscopic size, the quantum uncertainty which applied to it might be interpreted as meaning there was no time. That time only ‘crystallised’ out as a separate ‘dimension’ once the universe had expanded to a size where quantum uncertainty no longer dictated.

Some critics of the big bang theory ask, ‘What was there before the big bang?’ to which exponents conventionally reply that there was no ‘before’. Time as we experience it ceased to exist and became part of the initial hyper-energy field.

This quantum interpretation suggests that there in fact was no ‘big bang’ because there was literally no time when it happened.

Traditional visualisations of the big bang show an inverted cone, at the top is the big universe we live in and as you go back in time it narrows to a point – the starting point. Imagine, instead, something more like a round-bottomed sack: there’s a general expansion upwards and outwards but if you penetrate back to the bottom of the sack there is no ‘start’ point.

This theory was most fully worked out by Stephen Hawking and James Hartle.

The Hartle-Hawking no boundary Hartle and Hawking No-Boundary Proposal

Wormholes The book ends with speculations about the possibility that ‘wormholes’ existed in the first few milliseconds, tubes connecting otherwise distant parts of the exploding ball of universe. I understood the pictures of these but couldn’t understand the problems in the quantum theory of the origin which they set out to solve.

And the final section emphasises that everything cosmologists work on relates to the visible universe. It may be that the special conditions of the visible universe which we know about, are only one set of starting conditions which apply to other areas of the universe beyond our knowledge or to other universes. We will never know.

Thoughts

Barrow is an extremely clear and patient explainer. He avoids formulae. Between his prose and the many illustrations I understood most of what he was trying to say, though a number of concepts eluded me.

But the ultimate thing that comes over is his scepticism. Barrow summarises recent attempts to define laws governing the conditions prevailing at the start of the universe by, briefly describing the theories of James Hartle and Stephen Hawking, Alex Vilenkin, and Roger Penrose. But he does so only to go on to emphasise that they are all ‘highly speculative’. They are ‘ideas for ideas’ (p.135).

By the end of the book you get the idea that a very great deal of cosmology is either speculative, or highly speculative. But then half way through he says it’s a distinguishing characteristic of physicists that they can’t stop tinkering – with data, with theories, with ideas and speculations.

So beyond the facts and then the details of the theories he describes, it is insight into this quality in the discipline itself, this restless exploration of new ideas and speculations relating to some of the hardest-to-think-about areas of human knowledge, which is the final flavour the reader is left with.


Related links

Reviews of other science books

Cosmology

The environment

Human evolution

Genetics and life

  • What Is Life? How Chemistry Becomes Biology by Addy Pross (2012)
  • The Diversity of Life by Edward O. Wilson (1992)
  • The Double Helix by James Watson (1968)

Maths

Particle physics

Psychology

The Black Cloud by Fred Hoyle (1957)

‘Nice place you’ve got here. Have some tea?’
‘Thanks, it’s very kind of you.’
‘Not at all.’ (p.95)

If Pierre Boulle’s Monkey Planet is a kind of Swiftian satire which glossed over the practical aspects of space travel in order to concentrate on making its moralising points, The Black Cloud is the exact opposite, a showcase of Anglo-Saxon pragmatism and factual accuracy.

It is set slightly into what was then the future, the narrative opening in January 1964. The blurb on the back has already told you that it’s about a black cloud which enters the solar system heading towards the Earth, so there’s no surprise about the central fact of the story, but any suspense about whether this is going to be an apocalyptic, end-of-the-world shocker is killed stone dead by the first few words of the prologue. This is set fifty years in the future (2020) and immediately establishes the jocular tone and worldview.

It is a humorous letter from a chap at a jolly nice Cambridge college, Dr John McPhail, and he describes the advent of the black cloud as ‘an interesting episode’, so jolly interesting that it was the subject of the thesis which won him his fellowship at Queen’s College, Cambridge. Good show.

So – we realise immediately – the world is not going to end, and also we are going to be dealing with jolly decent chaps from Cambridge and the Royal Astronomical Society. Thus deprived of key elemens of suspense, the interest in this early part of the text derives from:

  • a highly accurate description of the state of astronomical knowledge circa 1957, along with the technology they used then (the different types of telescope, techniques for comparing prints of photos taken of deep space, a long description of punching the tape required in a very early computer)
  • some very detailed calculations about the probable velocity, density and direction of the cloud which the characters do on blackboards as they discuss it, and which are reproduced in the book (you don’t often see extensive mathematical formulae in a novel)
  • some of the terminology and phraseology: I was particularly struck by the way that the word lab, being a contraction of laboratory, is printed as ‘lab.’ throughout

Introduction to the star character, Professor Christopher Kingsley

So a group of astronomers in America notice that something is progressively blotting out stars in a particular part of the sky, while at the same time an amateur astronomer tips off the British Royal Astronomical Society that the orbits of the larger planets in the solar system seem to have shifted. Sceptical experts redo the observations and conclude that something massive is causing them to wobble.

At the meeting where these figures are first discussed we are introduced to the irascible figure of the Cambridge-based theoretical astronomer, Professor Christopher Kingsley, age 37, tall with thick dark hair and ‘astonishing blue eyes’, a man apart, who follows arguments to their logical conclusion no matter how unpopular, who gets cross with anyone slower on the uptake, and manages to be both highly intelligent and a figure of fun to his colleagues – and is without doubt the central character in the book.

All these chaps analyse the findings, draw formulae on blackboards, puff on their pipes and conclude that a cloud of unknown gas is going to engulf the Sun and Earth in about 17 months time. They estimate it will take about a month to transit past, during which time, if it blots out the heat from the sun, most animals on earth will die, along with most humans. Seeds in the soil should survive so the planet’s flora will kick off after the cloud has left.

As in Arthur C. Clarke, the pleasure comes from the scientific accuracy of the speculation at each stage of the narrative i.e. we eavesdrop while the American and British scientists discuss and interpret each new set of data and information as it comes in and then discuss the possible consequences. So one of the pleasures of the book is enjoying the temporary illusion that you are as clever as these top astronomers.

In these early pages Hoyle paints a stark contrast between the cultures of Britain and America. In Britain the astronomer royal visits Cambridge, where it is cold and damp and foggy and depressing – although the college fellows treat themselves to four-course dinners, and then sit by roaring fires drinking vintage wine.

By contrast, when Kingsley flies over to California to meet the astronomers there, he is hosted by astronomer Geoff Marlowe, who takes him for a drive out into the Mojave desert, then to a restaurant where they speculate about the forthcoming world-changing event – then onto a party at a rich property developer’s house, whence Kingsley goes on to a smaller, more intimate party where he tries to dance with a sexy broad, disapproves of American bourbon, doesn’t like the raucous music on the gramophone and generally comes over as an uptight limey. A dark-haired lady offers him a lift back to his hotel, but they go via her apartment where, since she’s forgotten her keys, he helps her break in, and he ends up spending the night

the contrast between big, rich, scenic, partyful and sexually promiscuous America, and cold, foggy, damp, austerity England where there don’t even appear to be any women, let alone loose women, couldn’t be more striking.

The scientists make a base in the Cotswolds

The book is full of what, to the modern reader, seem like all sorts of oddities and eccentricities. The American and British astronomers, over the course of a series of meetings, become convinced that an enormous cloud of gas is heading directly for the sun, though whether it is cold or hot, full of electrical or radioactive activity, or inert, they cannot say. If it’s hot it might boil the earth’s atmosphere way, killing all life. Even if it’s inert it will probably block the light from the sun, as described above, killing nearly all terrestrial life.

There are at least two oddities: one is the way they sit around in their Cambridge rooms, puffing their pipes and offering each other tea and biscuits while they speculate about the likely impact. The other is that both teams decide to conceal the fact from their respective governments. They think politicians will only interfere and cause panic.

In the event news does leak out to the civil service and the Home Secretary comes to meet Kingsley, who, deploying his ‘easy-going, insulting manner’ (p.128) is immensely rude and confrontational, telling him quite openly that he despises politicians and civil servants. We are then party to the Home Secretary reporting back to the Prime Minister and so on. It seems inconceivable that one man’s personal arrogance (Kingsley’s) can influence so much.

In the event a secretary to the PM, Francis Parkinson, comes up with the suggestion that the scientists be given their own research base to study the cloud, and Whitehall settles on the manor of Nortonstowe in the Cotswolds, a nice country mansion which the Ministry of Agriculture had just finished converting into a research centre for agriculture. It is co-opted for the astronomers. Kingsley is their undoubted leader and makes all kinds of demands as rudely as he can of the politicians.

The place us surrounded by military police, and servants rustled up from the nearby new housing estate, while Kingsley rounds up the best minds available and hounds the ministry into installing state of the art telescopes, photography equipment and so on (no computers). Kingsley makes the inexplicable demand that anybody who comes to Nortonstowe will not be allowed to leave. Thus the Whitehall aide, Parkinson, is inveigled into being stuck there, but Kingsley then pulls a deceitful trick by inviting a string quartet he knows from Cambridge to come and perform and, only on the morning after the performance, happening to tell them that, now they’re here, they won’t be able to leave.

Kingsley behaves like a cross between a dictator and a spoilt child and everyone has to put up with it because Hoyle makes him the great genius who knows or calculates or spots or thinks things through far faster than anyone else. The core of the novel is the dynamic between Kingsley and the small court of scientists he has assembled, including:

  • Geoff Marlowe the American
  • British astronomers Dave Weichart and John Marlborough
  • technicians Roger Emerson and Bill Barnett and Yvette Hedelfort
  • the woman leader of the string quartet Ann Halsey (who seems to spend her time making endless pots of coffee for the Big Brains around her and is on the receiving end of some breath-takingly sexist put-downs from Kingsley)
  • Knut Jensen from Norway via the States
  • Harry Leicester from the University of Sydney
  • John McNeil, a young physician, who ends up writing the prologue and epilogue to the narrative
  • and a Russian physicist who happened to be visiting Britain, Alexis Alexandrov, and soon becomes a comic figure because of his habit of speaking in extremely brief, pithy sentences, for example: ‘Gulf Stream goes, gets bloody cold’

Global devastation

Finally the cloud arrives and it is almost as an afterthought to the absorbing conversations between chaps puffing on their pipes and scribbling on blackboards, that Hoyle casually mentions the devastating impact it has on the rest of the human race. They thought the cloud would block the sun and cause a big freeze. They hadn’t anticipated that it would reflect the heat of the sun with increased force. Thus the world experiences unprecedented heatwaves.

Conditions were utterly desperate throughout the tropics as may be judged from the fact that 7,943 species of plants and animals became totally extinct. The survival of Man himself was only possible because of the caves and cellars he was able to dig. Nothing could be done to mitigate the stifling air temperature. The number who perished during this phase is unknown. It can only be said that during all phases together more than seven hundred million persons are known to have lost their lives. (p.120)

The really odd thing about the book, its most striking characteristic, is how the chaps at Nortonstowe carry on discussing theoretical physics and puffing on their pipes through it all. The vast rise in humidity led to atmospheric instability which led to an epidemic of wildly destructive hurricanes around the world. In fact the manor house at Nortonstowe is itself destroyed in one of these hurricanes and one of the astronomers, Jensen, killed.

All this was caused by heat reflected from the cloud. When the cloud itself begins to arrive and blot out the sun’s light and heat temperatures plummet. As Hoyle briskly summarises it:

Except in the heavily industrialised countries, vast legions of people lost their lives during this period. For weeks they had been exposed to well-nigh unbearable heat. Then many had died by flood and storm. With the coming of intense cold, pneumonia became fiercely lethal. Between the beginning of August and the first week of October roughly a quarter of the world’s population died. (p.127)

The scientists notice something strange and ominous. The cloud is slowing down. There is a great deal of scientific speculation about how it could do this which settles on the idea that it is sending out great pellets of ice which are acting like rockets to slow its velocity. Most vivid proof is when one of these enormous ice pellets hits the surface of the moon causing a massive spurt of moon dust which can be observed through earth telescopes. The cloud is slowing down and looks like stopping.

The Prime Minister pays a visit to what’s left of Nortonstowe (where things appear to be carrying on in the same civilised way, with tea and biscuits, despite the house itself having been wrecked) and tells Kingsley he’s pretty cross with the scientists. They said it would only occlude the sun for a month. It’s been there longer. Kingsley gets cross and says that’s because they have no idea what’s going on. Scientists aren’t gods, their knowledge is limited to what is known by observation, the cloud is a completely new phenomenon.

The cloud now does something else unexpected – it changes shape. It slowly changes from being a big amorphous cloud into the shape of a disk. This has the effect of allowing the earth to leave its shadow and emerge back into sunlight. Slowly humanity climbs out of its frozen caves to try and rebuild amid the ruins.

From a pure science point of view what sustains the book is that each stage of the cloud’s progress – from initial sighting through to enveloping the earth – the chorus of scientists Kingsley has assembled at Nortonstowe give voice to every possible interpretation of scientific possibilities. From one perspective the book is like a sequence of seminars on the successive stages of approach and envelopment by a gas cloud, which, altogether, cover a huge range of geographical and terrestrial phenomenon – the scientists discuss the possibility of global warming, global cooling, a new ice age, the atmosphere being heated until it boils, the entire atmosphere being torn away from the earth leaving it barren as the moon, the atmosphere freezing, and so on.

With the cloud now having completely halted and assumed a disc-like shape, and the earth having orbited out of its shadow, the astronomers have to tell the Prime Minister that it might become a new element of life on earth, that twice a year, in February and August, the earth will travel into the cloud and, for a few weeks, lose sun, warmth, life everything. It will be a completely new global condition.

Radio communication

There then follows a lengthy chapter which appears to be going off on a tangent. In preparation for the cloud arriving Kingsley had had the bright idea of installing not just telescopes and so on at Nortonstowe, but an array of the very latest radio equipment. This is because, in the coming disasters, he foresees that a centre of global information will be required. This chapter set out in minute detail the experiments with different wavelengths required to escape the interference caused by the cloud’s upsetting of the atmosphere. But during their experiments a pattern emerges: put simply, every time they change the wavelength, there is ionisation activity at the edge of the earth’s atmosphere which acts to neutralise it.

Kingsley astonishes the chaps by drawing a mad but logical conclusion: the cloud is blocking their radio transmissions; and if it is doing this no matter what wavelength they use, it must contain intelligent life.

Life in the cloud

Then there’s an interesting chapter devoted to the chaps arguing about how the cloud could possibly contain intelligent life and what form it could possibly take. Although Sir Fred Hoyle was the man who coined the expression Big Bang, he did it critically because he himself didn’t believe in the Big Bang theory i.e. that the universe had a definite beginning. Hoyle believed in the Steady State theory i.e. the universe has no beginning and will have no end. This chapter dramatises his theories of how intelligent life might have begun in vast gaseous clouds as electrical activity among groups of crystal molecules which formed on the surface of ice particles.

As routinely, throughout the book, the fact that half the earth’s population has just died, that agriculture and the environment have been devastated, economies ruined, ecosystems destroyed, are all completely ignored while a bunch of chaps sit around having a jolly interesting chat about the possibility of extra-terrestrial life.

Talking to the cloud

They make the decision to send regular pulses into the cloud as signs of intelligent communication. To cut a long story short, the cloud replies and within just a few days they are talking to the cloud. One of the technical johnnies rigs up a system whereby the electronic pulses the cloud sends back can be translated into words via one of those new-fangled televisions and, bingo! They can hear the cloud talk! And he speaks in exactly the tone of a jolly interesting Cambridge academic! This is the first message they hear from the cloud:

Your first transmission came as a surprise, for it is most unusual to find animals with technical skills inhabiting planets, which are in the nature of extreme outposts of life. (p.170)

One of the workers from the housing estate who had tended the gardens and tried to supply the scientists with fruit and veg through all the disasters, was a simple-minded gardener named Joe Stoddard. The technical johnny who rigs up the signals from the Cloud to come through a loudspeaker has, for a joke, used the voice pattern of Joe Stoddard. In other words, mankind’s first communications with the first intelligent extra-terrestrial life it’s encountered are translated into the phraseology of a Cambridge Common Room as expressed through the speech of a Gloucestershire peasant.As a result the scientists unanimously nickname the Cloud, ‘Joe’. Joe says this, Joe says that.

Joe proceeds to tell them all about himself. The universe is eternal and Joe thinks he has existed for some five hundred million years (p.178). He creates units of replicating life and seeds other clouds as he passes. Thus life is spread throughout the universe. He explains that intelligent life on planets is very rare for a multitude of reasons, for example the difficulty o gaining energy from surroundings by processing vegetable matter, and the thickness of skulls required to protect the brain militates against the brain growing in size. Plus the requirement of converting the intangible process of ‘thought’ – in reality a blizzard of electrical signals throughout the brain – into ‘speech’ i.e. the mechanical operation of jaw, lungs, vocal chords etc – a very primitive way to communicate.

This is fascinating and thought-provoking.

The hydrogen bombs

Back in the plot, word gets out to the politicians who are still running the governments of Britain, America and so on, that communication has been established with the Cloud. The governments insist on listening in on a ‘conversation’. This particular conversation is about human reproduction – sex – and its irrationality; it has to be irrational (love, lust) in order to overcome its very obvious pains and risks. The cloud opines that this may be why intelligent life on planets is so rare: the effort required for planet-borne life forms to communicate and to reproduce both tend to emphasise the irrational. Joe thinks the chances are humanity will over-populate the Earth and kill itself off.

After the ‘conversation’ is terminated, the conversation among the scientists continues with a few choice criticisms of politicians everywhere. Then one of the technicians points out that the politicians are still on the line. They have heard the scientists, particularly Kingsley, being as rude and dismissive of political interference as imaginable.

They then get a call from the American secretary of Defence to whom Kingsley is immensely rude and confrontational. When the Secretary threatens Kingsley, Kingsley foolishly replies that he can, with a few suggestions to Joe the Cloud, annihilate America if he wants to.

This seems tactless and rash even for Kingsley and the consequences are bad. As so often happens in 1950s Cold War sci-fi, the American and Russian governments decide the Cloud is a threat to their existence and launch missiles carrying hydrogen bombs at it.

The Nortonstowe scientists learn of this and warn the Cloud who is extremely cross, peeved wouldn’t be too strong a word. Kingsley explains that Earth is ruled by a variety of autonomous governments and that this decision has nothing to do with him or the other scientists. The Cloud announces he will simply return the missiles to their places of origin – with the result that El Paso and Chicago are wiped off the map, along with Kiev. About half a million people are vaporised.

In this, as in the reports of worldwide devastation, the really interesting thing is how offhand and disinterested Hoyle is about these, the melodramatic elements, of his story. Hundreds of millions die, hurricanes destroy the environment, H-bombs destroy American cities… but this is always forgotten whenever the chaps at Nortonstowe make a new discovery about the Cloud.

(And I never understood how Hoyle reconciles the fact that the entire manor house at Nortonstowe is destroyed in a hurricane with the fact that all the scientists carry on meeting in oak-panelled rooms, pouring each other cups of tea, puffing their pipes and discussing the various fascinating problems thrown up by the cloud. Where does all this happen? In a cave?)

The cloud departs

Then Joe the Cloud tells them that another cloud in the vicinity (i.e. hundreds of millions of miles away) has suddenly gone quiet. Joe tells us that this sometimes happens, none of the clouds know why. The clouds themselves are not omniscient. There are many aspects of the universe which are mysteries to them.

In the last few days before the cloud departs, our chaps ask it to tell them more about its vast knowledge. This is a once-in-a-lifetime chance.

‘Now, chaps, this is probably one of our last chances to ask questions. Suppose we make a list of them. Any suggestions?’ (p.204)

Weichart volunteers to sit in front of a series of TV monitors hooked up by Leicester, the TV man, to the Cloud’s wavelength. The transmission begins and vast amounts of information leap across the screens. Slowly Weichart goes into a trance or hypnotised state. His temperature rises, he becomes delirious, he has to be dragged away from the screens to a bed, where he dies.

Then Kingsley announces he will do the same only they’ll ask the Cloud to transmit at a greatly reduced pace. Caring Ann tries to get the other scientists to persuade Kingsley not to do it. Obstinately he insists. He too sits in front of the monitors, his brain is bombarded, he goes into a fugue state, has to be dragged away and sedated. When the sedation wears off he looks deranged and then starts screaming. More sedatives. He dies of brain inflammation. The cloud simply knows too much for a human brain to process, although a couple of the scientists speculate that there might be a subtler reason: it could be that the Cloud not only overloaded his primitive brain with information but that what he learned was so at odds with human understanding, so completely contrary to all the scientific theories which Kingsley had devoted his life to, that he went mad.

Epilogue

A short epilogue explains the end of the affair. It is written by John McNeil fifty years later. He had been co-opted to Nortonstowe as a young physician and was an eye witness to all the key events and discussions. It was he who treated and failed to save Kingsley.

He now explains that the fact that the Cloud was intelligent and the entire course of all its discussions with humans, as well as the fact that it decided to move on out of the solar system, were kept hidden from the public, from the world. A handful of politicians and the tiny cohort in the Cotswolds knew but both decided to keep it secret, for their various reasons.

This text is therefore in the nature of being a bombshell for the human race.

Only now, fifty years later, is he revealing all in this long narrative, addressed to a young colleague of his Blythe. Why Blythe? Well, he’s a fellow academic, but another reason is that he is the grandson of Ann Halsey, the classical musician trapped at Nortonstowe and who – from a few dropped hints – we suspect had an affair with Kingsley while they were confined to the Cotswold mansion. So Blythe is Kinbgsley’s grandson as well (I think).

Now McNeil is leaving Blythe the full narrative of events and leaving it up to him whether to make the whole thing public. He also bequeaths him a copy of the punched card ‘code’ which Kingsley et al used to communicated with the Cloud. What he does with it now is up to him.

Comments

The science is fascinating, and takes on a whole new twist once we realise the cloud is intelligent. But from start to finish what should be appalling, epic events – unprecedented heat wave, blotting out of the sun and unprecedented freeze, death of quarter of the world’s population etc – take a firm back seat to detailed accounts of the conversations between the various chaps, led by the grotesque Kingsley – and these conversations are of such a 1950s, man-from-the-ministry, ornate style that it is really most frightfully difficult to work up the sense of awe or horror a science fiction novel should strive for. Instead one finds oneself more distracted by the Oxbridge and Whitehall Mandarin style of the dialogue than by the epoch-making events the book describes.

This is from the long conversation between secretary to the Prime Minister Parkinson and Sir Charles Kingsley at the latter’s rooms in his Cambridge college. We know they’re getting on because Kingsley offers Parkinson a second cup of tea, puts more logs on the fire, and then makes his demands of the British government thus:

‘I want everything quite clear-cut. First, that I be empowered to recruit the staff to this Nortonstowe place, that I be empowered to offer what salaries I think reasonable, and to use any argument that may seem appropriate other than divulging the real state of things. Second, that there shall be, repeat no, civil servants at Nortonstowe, and that there shall be no political liaison except through yourself.’
‘To what do I owe this exceptional distinction?’
‘To the fact that, although we think differently and serve different masters, we do have sufficient common ground to be able to talk together. This is a rarity not likely to be repeated.’
‘I am indeed flattered.’
‘You mistake me then. I am being as serious as I know how to be. I tell you most solemnly that if I and my gang find any gentlemen of the proscribed variety at Nortonstowe we shall quite literally throw them out of the place. if this is prevented by police action or if the proscribed variety are so dense on the ground that we cannot throw them out, then I warn you with equal solemnity that you will not get one single groat of co-operation from us. If you think I am overstressing this point, then I would say that I am only doing so because I know how extremely foolish politicians can be.’
‘Thank you.’
‘Not at all.’ (pp.83-84)

It’s a little like the end of the world as Ealing Comedy.

‘Would you like to talk to the first intelligent life from outer space that humanity has ever encountered, Charles?’
‘Oh, that’s frightfully kind of you, Algernon, but I was going to make a fresh pot of tea. Why don’t you take first dibs?’
‘Well, that’s jolly decent of you, old chap. Two lumps for me.’


Related links

Other science fiction reviews

1888 Looking Backward 2000-1887 by Edward Bellamy – Julian West wakes up in the year 2000 to discover a peaceful revolution has ushered in a society of state planning, equality and contentment
1890 News from Nowhere by William Morris – waking from a long sleep, William Guest is shown round a London transformed into villages of contented craftsmen

1895 The Time Machine by H.G. Wells – the unnamed inventor and time traveller tells his dinner party guests the story of his adventure among the Eloi and the Morlocks in the year 802,701
1896 The Island of Doctor Moreau by H.G. Wells – Edward Prendick is stranded on a remote island where he discovers the ‘owner’, Dr Gustave Moreau, is experimentally creating human-animal hybrids
1897 The Invisible Man by H.G. Wells – an embittered young scientist, Griffin, makes himself invisible, starting with comic capers in a Sussex village, and ending with demented murders
1898 The War of the Worlds – the Martians invade earth
1899 When The Sleeper Wakes/The Sleeper Wakes by H.G. Wells – Graham awakes in the year 2100 to find himself at the centre of a revolution to overthrow the repressive society of the future
1899 A Story of the Days To Come by H.G. Wells – set in the same future London as The Sleeper Wakes, Denton and Elizabeth defy her wealthy family in order to marry, fall into poverty, and experience life as serfs in the Underground city run by the sinister Labour Corps

1901 The First Men in the Moon by H.G. Wells – Mr Bedford and Mr Cavor use the invention of ‘Cavorite’ to fly to the moon and discover the underground civilisation of the Selenites
1904 The Food of the Gods and How It Came to Earth by H.G. Wells – scientists invent a compound which makes plants, animals and humans grow to giant size, prompting giant humans to rebel against the ‘little people’
1905 With the Night Mail by Rudyard Kipling – it is 2000 and the narrator accompanies a GPO airship across the Atlantic
1906 In the Days of the Comet by H.G. Wells – a comet passes through earth’s atmosphere and brings about ‘the Great Change’, inaugurating an era of wisdom and fairness, as told by narrator Willie Leadford
1908 The War in the Air by H.G. Wells – Bert Smallways, a bicycle-repairman from Kent, gets caught up in the outbreak of the war in the air which brings Western civilisation to an end
1909 The Machine Stops by E.M. Foster – people of the future live in underground cells regulated by ‘the Machine’ until one of them rebels

1912 The Lost World by Sir Arthur Conan Doyle – Professor Challenger leads an expedition to a plateau in the Amazon rainforest where prehistoric animals still exist
1912 As Easy as ABC by Rudyard Kipling – set in 2065 in a world characterised by isolation and privacy, forces from the ABC are sent to suppress an outbreak of ‘crowdism’
1913 The Horror of the Heights by Arthur Conan Doyle – airman Captain Joyce-Armstrong flies higher than anyone before him and discovers the upper atmosphere is inhabited by vast jellyfish-like monsters
1914 The World Set Free by H.G. Wells – A history of the future in which the devastation of an atomic war leads to the creation of a World Government, told via a number of characters who are central to the change
1918 The Land That Time Forgot by Edgar Rice Burroughs – a trilogy of pulp novellas in which all-American heroes battle ape-men and dinosaurs on a lost island in the Antarctic

1921 We by Evgeny Zamyatin – like everyone else in the dystopian future of OneState, D-503 lives life according to the Table of Hours, until I-330 wakens him to the truth
1925 Heart of a Dog by Mikhail Bulgakov – a Moscow scientist transplants the testicles and pituitary gland of a dead tramp into the body of a stray dog, with disastrous consequences
1927 The Maracot Deep by Arthur Conan Doyle – a scientist, engineer and a hero are trying out a new bathysphere when the wire snaps and they hurtle to the bottom of the sea, there to discover…

1930 Last and First Men by Olaf Stapledon – mind-boggling ‘history’ of the future of mankind over the next two billion years
1938 Out of the Silent Planet by C.S. Lewis – baddies Devine and Weston kidnap Ransom and take him in their spherical spaceship to Malacandra aka Mars,

1943 Perelandra (Voyage to Venus) by C.S. Lewis – Ransom is sent to Perelandra aka Venus, to prevent a second temptation by the Devil and the fall of the planet’s new young inhabitants
1945 That Hideous Strength: A Modern Fairy-Tale for Grown-ups by C.S. Lewis– Ransom assembles a motley crew to combat the rise of an evil corporation which is seeking to overthrow mankind
1949 Nineteen Eighty-Four by George Orwell – after a nuclear war, inhabitants of ruined London are divided into the sheep-like ‘proles’ and members of the Party who are kept under unremitting surveillance

1950 I, Robot by Isaac Asimov – nine short stories about ‘positronic’ robots, which chart their rise from dumb playmates to controllers of humanity’s destiny
1950 The Martian Chronicles – 13 short stories with 13 linking passages loosely describing mankind’s colonisation of Mars, featuring strange, dreamlike encounters with Martians
1951 Foundation by Isaac Asimov – the first five stories telling the rise of the Foundation created by psychohistorian Hari Seldon to preserve civilisation during the collapse of the Galactic Empire
1951 The Illustrated Man – eighteen short stories which use the future, Mars and Venus as settings for what are essentially earth-bound tales of fantasy and horror
1952 Foundation and Empire by Isaac Asimov – two long stories which continue the future history of the Foundation set up by psychohistorian Hari Seldon as it faces attack by an Imperial general, and then the menace of the mysterious mutant known only as ‘the Mule’
1953 Second Foundation by Isaac Asimov – concluding part of the ‘trilogy’ describing the attempt to preserve civilisation after the collapse of the Galactic Empire
1953 Earthman, Come Home by James Blish – the adventures of New York City, a self-contained space city which wanders the galaxy 2,000 years hence powered by spindizzy technology
1953 Fahrenheit 451 by Ray Bradbury – a masterpiece, a terrifying anticipation of a future when books are banned and professional firemen are paid to track down stashes of forbidden books and burn them
1953 Childhood’s End by Arthur C. Clarke a thrilling narrative involving the ‘Overlords’ who arrive from space to supervise mankind’s transition to the next stage in its evolution
1954 The Caves of Steel by Isaac Asimov – set 3,000 years in the future when humans have separated into ‘Spacers’ who have colonised 50 other planets, and the overpopulated earth whose inhabitants live in enclosed cities or ‘caves of steel’, and introducing detective Elijah Baley to solve a murder mystery
1956 The Naked Sun by Isaac Asimov – 3,000 years in the future detective Elijah Baley returns, with his robot sidekick, R. Daneel Olivaw, to solve a murder mystery on the remote planet of Solaria
1956 They Shall Have Stars by James Blish – explains the invention – in the near future – of the anti-death drugs and the spindizzy technology which allow the human race to colonise the galaxy
1957 The Black Cloud by Fred Hoyle – a vast cloud of gas heads into the solar system, blocking out heat and light from the sun with cataclysmic consequences on earth, until a small band of astronomers discovers the cloud contains intelligence and can be communicated with
1959 The Triumph of Time by James Blish – concluding story of Blish’s Okie tetralogy in which Amalfi and his friends are present at the end of the universe

1961 A Fall of Moondust by Arthur C. Clarke a pleasure tourbus on the moon is sucked down into a sink of moondust, sparking a race against time to rescue the trapped crew and passengers
1962 A Life For The Stars by James Blish – third in the Okie series about cities which can fly through space, focusing on the coming of age of kidnapped earther, young Crispin DeFord, aboard New York
1962 The Man in the High Castle by Philip K. Dick In an alternative future America lost the Second World War and has been partitioned between Japan and Nazi Germany. The narrative follows a motley crew of characters including a dealer in antique Americana, a German spy who warns a Japanese official about a looming surprise German attack, and a woman determined to track down the reclusive author of a hit book which describes an alternative future in which America won the Second World War
1963 Planet of the Apes by Pierre Boulle French journalist Ulysse Mérou accompanies Professor Antelle on a two-year space flight to the star Betelgeuse, where they land on an earth-like plane to discover that humans and apes have evolved here, but the apes are the intelligent, technology-controlling species while the humans are mute beasts
1968 2001: A Space Odyssey a panoramic narrative which starts with aliens stimulating evolution among the first ape-men and ends with a spaceman being transformed into galactic consciousness
1968 Do Androids Dream of Electric Sheep? by Philip K. Dick In 1992 androids are almost indistinguishable from humans except by trained bounty hunters like Rick Deckard who is paid to track down and ‘retire’ escaped andys
1969 Ubik by Philip K. Dick In 1992 the world is threatened by mutants with psionic powers who are combated by ‘inertials’. The novel focuses on the weird alternative world experienced by a group of inertials after a catastrophe on the moon

1971 Mutant 59: The Plastic Eater by Kit Pedler and Gerry Davis – a genetically engineered bacterium starts eating the world’s plastic
1973 Rendezvous With Rama by Arthur C. Clarke – in 2031 a 50-kilometre long object of alien origin enters the solar system, so the crew of the spaceship Endeavour are sent to explore it
1974 Flow My Tears, The Policeman Said by Philip K. Dick – America after the Second World War has become an authoritarian state. The story concerns popular TV host Jason Taverner who is plunged into an alternative version of this world in which he is no longer a rich entertainer but down on the streets among the ‘ordinaries’ and on the run from the police. Why? And how can he get back to his storyline?
1974 The Forever War by Joe Haldeman The story of William Mandella who is recruited into special forces fighting the Taurans, a hostile species who attack Earth outposts, successive tours of duty requiring interstellar journeys during which centuries pass on Earth, so that each of his return visits to the home planet show us society’s massive transformations over the course of the thousand years the war lasts.

1981 The Golden Age of Science Fiction edited by Kingsley Amis – 17 classic sci-fi stories from what Amis considers the Golden Era of the genre, namely the 1950s
1982 2010: Odyssey Two by Arthur C. Clarke – Heywood Floyd joins a Russian spaceship on a two-year journey to Jupiter to a) reclaim the abandoned Discovery and b) investigate the monolith on Japetus
1987 2061: Odyssey Three by Arthur C. Clarke – Spaceship Galaxy is hijacked and forced to land on Europa, moon of the former Jupiter, in a ‘thriller’ notable for Clarke’s descriptions of the bizarre landscapes of Halley’s Comet and Europa

Rendezvous with Rama by Arthur C. Clarke (1973)

Good God, this is a great read! What a thrilling, compelling, exciting and wonder-working story.

Rama appears

It is 2031. Humanity has spread out to colonise some of the planets of the solar system and to conduct trade across much of it. We have realised by this stage that the system is crossed y hundreds of thousands of asteroids, meteors and comets travelling through it.

But a new one is spotted, that is spinning so fast (with a rotation period of 4 minutes) and then, upon closer investigation, is so symmetrical in shape, that astronomers conclude it must have been made by intelligent life. Since, as Clarke sardonically remarks, astronomers long ago ran out of names from the Greek and Roman pantheons with which to name heavenly bodies, they are now well into Hindu mythology, and that is why the unknown object is christened ‘Rama’, after the seventh avatar of the god Vishnu.

The solar survey vessel Endeavour captained by Commander Bill Norton is diverted from its scheduled route to go and investigate and so – fairly quickly, only 20 or so pages into the text – Norton and his crew come gingerly to rest on one end of an absolutely enormous metal cylinder, some 20 kilometres (12 mile) in diameter and 54 kilometres (34 miles) long.

With his trademark attention to scientific detail and the practicalities of physics, Clarke follows Norton and his crew as they almost immediately locate a ‘wheel’ embedded in one of the three large ‘studs’ which stick out of the otherwise vast smooth surface of the ‘end’ they’ve landed on.

Inside Rama

When Norton touches the wheel it lifts away from the stud and when he turns it… a side of the stud opens to reveal an entrance. It gives onto a long tunnel, which ends in another door with a control wheel, another tunnel, another door – a system of triple airlocks, with the final one opening into the interior of Rama, a vast empty cylinder which is so large, and is spinning at such speed, that the inside surface has gravity and on it appear to be various buildings.

Norton and the men and women of his crew realise that each of the three ‘studs’ must contain the airlocks and tunnels, because they can see two other doorways cut into the surface they can now see. From each of them a ladder stretches out across the surface of the gently curving ‘end’ towards the sides or ‘floor’ of the vast cylinder. After a few kilometers the ladders change into steps, a vast staircase which leads eventually down onto the smooth interior of the ‘floor’ which is, of course, cylindrical i.e. if you set off along the circumference you would eventually end up back where you belong. But due to the gravity imparted by Rama‘s spin, once on the ‘floor’ your body thinks it is a flat surface.

For the first hundred pages the teams navigate the ladders and steps, bring in equipment, set up a base at the foot of ‘their’ steps, then set out to explore the world more. Notable features include that it is warm, the air is breatheable if musty, but it appears uninhabited and completely lifeless.

One team arrives at the most striking feature of all which is a great central ‘sea’ which runs in a ten kilometer-wide band around the centre of the world, dividing it in two (p.41). Far away in the distance, at the south of the cylinder, on the ‘top’ or flat surface opposite the one they’ve come in by, they can see a set of six long, thin cones surrounding a truly massive one (which they name ‘the Big Horn’) which they speculate might be something to do with the propulsion system.

As in the best Clarke books,  the laws of physics, astrophysics and so on are rigorously adhered to and thoroughly explained. They provide the underpinning for everything that happens.

Surprises

But at the same time Clarke carefully paces the book (250 pages long in the Orion paperback version) to fill it with mounting suspense. At regular intervals there come great shocks or twists in the story which take the reader – and the crew of the Endeavour – by surprise.

Light

Thus the early spying out of the interior is done by means of enormous floodlights which the Endeavour conveniently is carrying. It is a great shock to the crew when suddenly… the lights go on. And we all realise that the six deep ‘canals’ which run the length Rama and which appeared to have ice or some frozen substance along their bottoms, are in fact Raman flood lights.

Storms

Then, as the atmosphere slowly warms up as Rama‘s trajectory through the solar system takes her closer and closer to the sun, Clarke gives a perfect example of the way he conceives the most dramatic twists, but based entirely on real scientific principles. One of the earth experts who are monitoring the crew’s mission, Carlisle Perrera, points out that… they should expect cyclones. Given the ship’s spin, and the fact the air is warming up, and that there is a central sea to provide moisture… well, they just better get out of it as soon as possible. Initially sceptical, Norton feels a breeze on his cheeks and orders the immediate evacuation. They take all the equipment they can and withdraw behind the airlock for 48 hours.

When they re-enter Rama it is to discover that it has clouds and a climate.

Sky bike

The longest thread or sequence concerns one of the crew members Jimmy Pak, who has smuggled onto the Endeavour one of the low-gravity sky bikes which he is a noted champion for riding on Mars. You lie in its very fragile, very frail balsa wood structure with gossamer fine wings and pedal a bicycle wheel which works a light propeller.

He now suggests to Commander Norton that he sets out dead centre to the axis of Rama (where he will have no gravity) and rides fragile his bike (aptly named Dragonfly) all the way to the south end. Norton agrees. In fact, being Clarke the author explains that Pak will actually get more traction on the air if he cycles a little off the central axis and so has a modicum of gravitational pull to help stabilise the bike.

He takes a camera and radio and reports back to Norton what he (and the reader) are seeing. It takes some hours but he gets right to the end and is floating around the vast central cone which sticks out miles into the centre of Ramas atmosphere when, by an unfortunate coincidence, he realises it is projecting a magnetic field, and then sees flicker of flames.

The experts back on earth who are monitoring everything via an audiovisual link tell the team that Rama is making a manoeuvre, altering the angle of its approach to the sun. Obviously whatever energies are achieving this are creating fireworks on the cones. They tell Pak to get the hell out of there. He gets a fair distance before there is a big discharge and the airwaves smash his sky bike like matchsticks. Very slowly but irrevocably it starts its long descent to the ‘floor’ beneath, with Pak furiously cycling to see if he can make it back across the Central Sea.

He doesn’t. It crashes. He is knocked out.

Robots

When he regains consciousness he sees a giant metal crab snuffling round him. It takes Pak a while to realise that it is some kind of robot and that it appears to have the task of collecting litter and detritus. It picks up the wreckage of Pak’s bike and slings it into a basket on its back. Pak follows it as it locates, chops up and stores all other metal bric-à-brac it finds before it makes its way to a huge circular hole with water at the bottom. It tips the trash into it and scuttles off. Pak watches as distant things surface from the murky water below and seize the trash.

He makes his way through a landscape of ‘fields’ clearly divided form each other but each put to bizarre uses, some covered in metal, or metal grilles, some with black and white squares, nothing to do with agriculture in our sense, although Pak does spot something which looks like an earth ‘flower’ and (rashly) plucks it – only to have it shrivel in his hand.

Norton has been planning a rescue attempt ever since Pak got into trouble. Another member of the crew, Sergeant Ruby Barnes, is an experienced sailor. She is able to rig up a craft with an improvised motor which should be able to make it across the Central Sea. Norton and others climb aboard.

The team’s biologist, Surgeon-Commander Laura Ernst, had taken samples of the Cylindrical Sea and discovered that, while it is water, it is packed with minerals, metal traces and poisons, making a kind of ‘organic soup’. Emphatically not to be drunk, preferably not even touched.

This makes it tricky when the rescue boat arrives at the other side because of a phenomenon they’d all observed but no-one can explain. Whereas the cliff from the ‘land’ down to the sea’s surface is only 50 metres on their side (they call their side the ‘north’ side), on the other side it is ten times as high, 500 metres. Huge.

The parachute

They discuss various ways that Pak might get down, until one of the earth scientists makes another, very realistic practical Clarkean observation. With gravity about a fifth of earth Pak can probably get by with simply using his shirt as a parachute. So, commending his soul to the lord Pak jumps off and, to everyone’s relief, it works and he sails gently down into the sea, admittedly landing in the toxic water a little way.The crew quickly get him out and wipe him down

Tidal wave

Half way back to the ‘north’ side the crew spot a terrifying thing. For some reason a wave seems to be moving across the sea, starting at a point over their heads, but moving fast. It is, they speculate, maybe the beginning of a ‘tide’, much as the heating of the atmosphere caused storms. Or maybe was caused when Rama made the course correction which caused the sparking and detonation which wrecked Pak’s sky bike.

Anyway, it looks like it will hit them before they can get to the other side. The sailor is quick witted and notices that the mountainous frothing wave gives way to shallow bump when it passes over the shallows. Clearly the bottom of the sea is very irregular. Noticing structures close to the surface, Barnes navigates to a shallow area, and the wave passes harmlessly past them.

And here again they see a strange looking nine-spoked wheel emerge from the disturbed sea, and then watch as it, too, is dismantled by a horde of tiny other little aquatic ‘creatures’. the place is pulsing with life but none of it organic.

Biots

As this summary shows, we don’t meet any Ramans. There are no alien encounters and shootouts with ray guns. Almost all the perils and dangers the crew face are the result of basic physical laws and some of the inexplicable behaviour of the inside of the ship.

This changes a bit when the crew wake to find bits of their camp dismantled and moved about. Looking down onto the plain they realise that it is now covered with moving objects. One of them is discovered damaged near the camp. It is three-legged, like a tripod with a football at the top. Upon inspection it appears to be partly organic, part machine, powered by a sort of organic cell. These along with the crab Pak saw, are obviously forms of robot carrying out maintenance tasks on Rama.

But where are the Ramans, the designers of it all?

Templates

As soon as the big lights had come on the crew had realised that the interior of Rama was dotted by clusters of buildings, which they referred to as cities and jokingly named London, Paris and so on with pride of place given to the cluster of buildings located on land within the great Central Sea. When they had investigated any of the cities they were puzzled by the ‘buildings’ which were building-shaped alright but had no windows or doors or even break between themselves and the metal floor.

The explorers’ time on Rama is running out. During the three weeks they’ve been there it has travelled from near the orbit of Jupiter to approach Mercury on what appears to be a journey which will take it close to the sun.

Commander Norton decides it is time to ‘break in’ to some of these buildings. They go to the nearest city, which they’ve named London and use a laser to cut a way into one of the buildings. Inside they see a formal array of pillars of what looks like crystal stretching away. On closer examination they realise each one contains a sort of hologram image of an artifact. Slowly they realise they must be tools, maybe even eating utensils and, the most thought-provoking find, what appears to be an item of clothing, which appears to have straps and pockets.

Threes. The Ramans do everything in threes or multiples of three. There were three airlocks into the interior. there are six enormous long fluorescent strips running the length of the ship. The biot they found had tripod legs. And now this uniform looks like it is designed for something with three arms. Hmmm.

Could it be that these holograms are the stored record of items which can be manufactured at will out of the ingredients found in the Central Sea? That the proliferation of biots they saw suddenly appearing are manufactured by this process, and anything which is damaged, lost or consumed is chucked back into the sea which thus provides an eternal source of everything necessary to build and maintain this world?

Time to leave

Anyway, other members of the crew report that the biots seem to be returning to the Central Sea, and they all notice that the six gigantic striplights which illuminate Rama’s interior are beginning to dim. Time to pack up and leave and go back aboard the Endeavour. Not without quite a bit of frustration on everyone’s part that they have seen so much, and seen so much and yet… haven’t even scratched the surface, are left understanding nothing.

The Hermian conspiracy

Right at the end there is a bit of ‘thriller’ content, an utterly man-made peril. All through the book we have been cutting away to meetings of the specially set-up Rama Committee consisting of members of ‘the United Planets’ i.e. representatives from all the colonised planets and moons.

The Hermian colonists have been sharp and aggressive throughout and withdrew altogether from the Committee a few episodes earlier. They consider that Rama might establish itself in an orbit just inside that of Mercury and use this position ‘to dominate the solar system’.

Now Endeavour‘s crew detect a rocket carrying a nuclear weapon approaching Rama. They receive a warning from the government of Mercury (the Hermians, from Hermes, Greek name for the Roman god Mercury) telling them they have an hour to get away before the bomb is detonated. Norton is appalled at this act of barbarism against an object he has come to deeply respect.

Again Clarke uses his knowledgeability about basic physics to have one of the crew members, Lieutenant Boris Rodrigo (‘the quiet, dignified communications officer’, p.66), point out that there is a significant time delay for radio signals to pass from Mercury to the rocket, about five minutes. This would give him about ten minutes to putter out to the rocket on his jet ‘scooter’ and disarm it before the Hermians have time to react. Even if they see him approaching the rocket using a little jet-propelled pod and press detonate, that signal will take five minutes to travel back.

In other words he should have time to propel himself out to rocket and cut the cables activating the bomb. If his jet propellent works properly. If he succeeds in securing himself to the bomb quickly. If he can find the right cables. if he can cut them.

Clarke ratchets up the tension with thriller-style suspense here at the end but, of course, Rodrigo succeeds, and the Hermians are covered in vituperation from the rest of the United Planets. Not only does Rodrigo disarm the bomb, but he cuts the cable securing its radio antenna, so that it can no longer receive any signals from Mercury. And then he very slowly uses the small amount of propellant the ‘scooter’ has to redirect the missile and then push it slowly away from the sun. It is now set on a trajectory to take it away from the sun and out of the solar system (although it will, admittedly, take it several thousand years).

(It is no coincidence that Rodrigo is picked for this job. He is a Cosmo-Christer,follower of a form of Christianity which has updated itself for the space age.)

Ave atque vale

Endeavour activates its engines and steers away from Rama initially using its cone of shadow to protect it from the sun to which they are both now uncomfortably near.

Since it was detected human scientists have been speculating about whether it intended to contact earth, to slow down and ‘visit’ one or other of the planets, or adopt a permanent orbit round the sun. But right to the end Rama maintains its complete indifference to humanity. As it reaches its closest point to the sun it changes direction, using the sun’s gravitational field and its own mysterious ‘space drive’ to accelerate on out the other side of the solar system, heading towards an unknown destination in the direction of the Large Magellanic Cloud, a mystery to the end.

An artist's impression of the interior of Rama

Of the many available images I think this artist’s impression of the interior of Rama best conveys the scale but also the barrenness of Clarke’s conception

Captain Cook

The spaceship in 2001: A Space Odyssey is named Discovery. In Rama the central spaceship is named Endeavour. These are both names of ships led by Captain Cook in his famous three voyages around the Pacific. On page 89 we learn that Commander Norton is not only a fan of Captain Cook, and has read everything he wrote, but has turned himself ‘into probably the world’s leading authority on the greatest explorer of all time’. No surprise, then, that when they’re wondering what to christen the makeshift dinghy they’ve knocked up to sail on the great Cylindrical sea, they come up with Resolution, the name of another of Cook’s ships. And again, after Norton has received the threatening ultimatum from Mercury telling him to take the Endeavour clear of Rama before the Hermians detonate the nuclear bomb, there is a page when he is alone in his cabin looking at his portrait of Captain Cook, communing with the old explorer’s spirit, while he tries to decide what to do: obey the simple order and let Rama be obliterated, or act on his instinct to preserve and save it. Cook’s spirit of tolerance and scientific enquiry prevails. Norton gives the order for Rodrigo to set out on his Rama-saving mission.

Clarke writes from an era when one could give unqualified praise to the great white male heroes of the past. Having been to two exhibitions about Captain Cook this year, I know that this, along with many of Clarke’s other views, no matter how reasonable, now seem very dated.

Audiobook

YouTube has a number of readings of the entire book. This sounds like the best one.


Related links

Arthur C. Clarke reviews

  • Childhood’s End (1953) a thrilling narrative involving the ‘Overlords’ who arrive from space to supervise mankind’s transition to the next stage in its evolution
  • A Fall of Moondust (1961) a pleasure tourbus on the moon is sucked down into a sink of moondust, sparking a race against time to rescue the trapped crew and passengers
  • 2001: A Space Odyssey (1968) a panoramic narrative which starts with aliens stimulating evolution among the first ape-men and ends with a spaceman being transformed into galactic consciousness
  • Rendezvous with Rama (1973) a 50-kilometre-long object of alien origin enters the solar system so the crew of the spaceship Endeavour are sent to explore it

Other science fiction reviews

1888 Looking Backward 2000-1887 by Edward Bellamy – Julian West wakes up in the year 2000 to discover a peaceful revolution has ushered in a society of state planning, equality and contentment
1890 News from Nowhere by William Morris – waking from a long sleep, William Guest is shown round a London transformed into villages of contented craftsmen

1895 The Time Machine by H.G. Wells – the unnamed inventor and time traveller tells his dinner party guests the story of his adventure among the Eloi and the Morlocks in the year 802,701
1896 The Island of Doctor Moreau by H.G. Wells – Edward Prendick is stranded on a remote island where he discovers the ‘owner’, Dr Gustave Moreau, is experimentally creating human-animal hybrids
1897 The Invisible Man by H.G. Wells – an embittered young scientist, Griffin, makes himself invisible, starting with comic capers in a Sussex village, and ending with demented murders
1898 The War of the Worlds – the Martians invade earth
1899 When The Sleeper Wakes/The Sleeper Wakes by H.G. Wells – Graham awakes in the year 2100 to find himself at the centre of a revolution to overthrow the repressive society of the future
1899 A Story of the Days To Come by H.G. Wells – set in the same London of the future described in the Sleeper Wakes, Denton and Elizabeth fall in love, then descend into poverty, and experience life as serfs in the Underground city run by the sinister Labour Corps

1901 The First Men in the Moon by H.G. Wells – Mr Bedford and Mr Cavor use the invention of ‘Cavorite’ to fly to the moon and discover the underground civilisation of the Selenites
1904 The Food of the Gods and How It Came to Earth by H.G. Wells – two scientists invent a compound which makes plants, animals and humans grow to giant size, leading to a giants’ rebellion against the ‘little people’
1905 With the Night Mail by Rudyard Kipling – it is 2000 and the narrator accompanies a GPO airship across the Atlantic
1906 In the Days of the Comet by H.G. Wells – a passing comet trails gasses through earth’s atmosphere which bring about ‘the Great Change’, inaugurating an era of wisdom and fairness, as told by narrator Willie Leadford
1908 The War in the Air by H.G. Wells – Bert Smallways, a bicycle-repairman from Bun Hill in Kent, manages by accident to be an eye-witness to the outbreak of the war in the air which brings Western civilisation to an end
1909 The Machine Stops by E.M. Foster – people of the future live in underground cells regulated by ‘the Machine’ until one of them rebels

1912 The Lost World by Sir Arthur Conan Doyle – Professor Challenger leads an expedition to a plateau in the Amazon rainforest where prehistoric animals still exist
1912 As Easy as ABC by Rudyard Kipling – set in 2065 in a world characterised by isolation and privacy, forces from the ABC are sent to suppress an outbreak of ‘crowdism’
1913 The Horror of the Heights by Arthur Conan Doyle – airman Captain Joyce-Armstrong flies higher than anyone before him and discovers the upper atmosphere is inhabited by vast jellyfish-like monsters
1914 The World Set Free by H.G. Wells – A history of the future in which the devastation of an atomic war leads to the creation of a World Government, told via a number of characters who are central to the change
1918 The Land That Time Forgot by Edgar Rice Burroughs – a trilogy of pulp novellas in which all-American heroes battle ape-men and dinosaurs on a lost island in the Antarctic

1921 We by Evgeny Zamyatin – like everyone else in the dystopian future of OneState, D-503 lives life according to the Table of Hours, until I-330 wakens him to the truth
1925 Heart of a Dog by Mikhail Bulgakov – a Moscow scientist transplants the testicles and pituitary gland of a dead tramp into the body of a stray dog, with disastrous consequences
1927 The Maracot Deep by Arthur Conan Doyle – a scientist, engineer and a hero are trying out a new bathysphere when the wire snaps and they hurtle to the bottom of the sea, there to discover…

1930 Last and First Men by Olaf Stapledon – mind-boggling ‘history’ of the future of mankind over the next two billion years
1932 Brave New World by Aldous Huxley
1938 Out of the Silent Planet by C.S. Lewis – baddies Devine and Weston kidnap Ransom and take him in their spherical spaceship to Malacandra aka Mars,

1943 Perelandra (Voyage to Venus) by C.S. Lewis – Ransom is sent to Perelandra aka Venus, to prevent a second temptation by the Devil and the fall of the planet’s new young inhabitants
1945 That Hideous Strength: A Modern Fairy-Tale for Grown-ups by C.S. Lewis– Ransom assembles a motley crew to combat the rise of an evil corporation which is seeking to overthrow mankind
1949 Nineteen Eighty-Four by George Orwell – after a nuclear war, inhabitants of ruined London are divided into the sheep-like ‘proles’ and members of the Party who are kept under unremitting surveillance

1950 I, Robot by Isaac Asimov – nine short stories about ‘positronic’ robots, which chart their rise from dumb playmates to controllers of humanity’s destiny
1950 The Martian Chronicles – 13 short stories with 13 linking passages loosely describing mankind’s colonisation of Mars, featuring strange, dreamlike encounters with Martians
1951 Foundation by Isaac Asimov – the first five stories telling the rise of the Foundation created by psychohistorian Hari Seldon to preserve civilisation during the collapse of the Galactic Empire
1951 The Illustrated Man – eighteen short stories which use the future, Mars and Venus as settings for what are essentially earth-bound tales of fantasy and horror
1952 Foundation and Empire by Isaac Asimov – two long stories which continue the future history of the Foundation set up by psychohistorian Hari Seldon as it faces down attack by an Imperial general, and then the menace of the mysterious mutant known only as ‘the Mule’
1953 Second Foundation by Isaac Asimov – concluding part of the ‘trilogy’ describing the attempt to preserve civilisation after the collapse of the Galactic Empire
1953 Earthman, Come Home by James Blish – the adventures of New York City, a self-contained space city which wanders the galaxy 2,000 years hence powered by spindizzy technology
1953 Fahrenheit 451 by Ray Bradbury – a masterpiece, a terrifying anticipation of a future when books are banned and professional firemen are paid to track down stashes of forbidden books and burn them
1954 The Caves of Steel by Isaac Asimov – set 3,000 years in the future when humans have separated into ‘Spacers’ who have colonised 50 other planets, and the overpopulated earth whose inhabitants live in enclosed cities or ‘caves of steel’, and introducing detective Elijah Baley to solve a murder mystery
1956 The Naked Sun by Isaac Asimov – 3,000 years in the future detective Elijah Baley returns, with his robot sidekick, R. Daneel Olivaw, to solve a murder mystery on the remote planet of Solaria
1956 They Shall Have Stars by James Blish – explains the invention – in the near future – of the anti-death drugs and the spindizzy technology which allow the human race to colonise the galaxy
1959 The Triumph of Time by James Blish – concluding story of Blish’s Okie tetralogy in which Amalfi and his friends are present at the end of the universe

1962 A Life For The Stars by James Blish – third in the Okie series about cities which can fly through space, focusing on the coming of age of kidnapped earther, young Crispin DeFord, aboard New York

1971 Mutant 59: The Plastic Eater by Kit Pedler and Gerry Davis – a genetically engineered bacterium starts eating the world’s plastic

1980 Russian Hide and Seek by Kingsley Amis – in an England of the future which has been invaded and conquered by the Russians, a hopeless attempt to overthrow the occupiers is easily crushed
1981 The Golden Age of Science Fiction edited by Kingsley Amis – 17 classic sci-fi stories from what Amis considers the Golden Era of the genre, namely the 1950s

2001: A Space Odyssey by Arthur C. Clarke (1968)

Origins

It all started with a short story Clarke wrote for a BBC competition in 1948 when he was just 21, and titled The Sentinel. It was eventually published in 1951 under the title Sentinel of Eternity.

13 years later, after completing Dr. Strangelove in 1964, American movie director Stanley Kubrick turned his thoughts to making a film with a science fiction subject. Someone suggested Clarke as a source and collaborator, and when they met, later in 1964, they got on well and formed a good working relationship.

Neither of them could have predicted that it would take them four long years of brainstorming, viewing and reading hundreds of sci-fi movies and stories, and then honing and refining the narrative, to develop the screenplay which became the film 2001: A Space Odyssey, released in 1968 and one of the most influential movies of all time.

The original plan had been to develop the story as a novel first, then turn it into a screenplay, then into the film, but the process ended up being more complex than that. The novel ended up being written mostly by Clarke, while Kubrick’s screenplay departed from it in significant ways.

The most obvious difference is that the book is full of Clarke’s sensible, down-to-earth, practical explanations of all or most of the science involved. It explains things. From the kick-start given to human evolution by the mysterious monolith through to Bowman’s journey through the Star Gate, Clarke explains and contextualises.

This is all in stark contrast with the film which Kubrick made as cryptic as possible by reducing dialogue to an absolute minimum, and eliminating all explanation. Kubrick is quoted as saying that the film was ‘basically a visual, nonverbal experience’, something which a novel, by definition, can not be.

The novel

The novel is divided into 47 short snappy chapters, themselves grouped into six sections.

1. Primeval Night

The basic storyline is reasonably clear. A million years ago an alien artefact appears on earth, materialising in Africa, in the territory of a small group of proto-human man-apes. Clarke describes their wretched condition in the hot parched Africa of the time, permanently bordering on starvation, watered only by a muddy streamlet, dying of malnutrition and weakness or of old age at 30, completely at the mercy of predators like a local leopard.

The object – 15 feet high and a yard wide – appears from nowhere. When the ape-men lumber past it on the way to their foraging ground, it becomes active and literally puts ideas into their heads. It takes possession of members of the group in turn and forces them to tie knots in grass, to touch their fingers together, to perform basic physical IQ tests. Then, crucially, it patiently shows them how to use stones and the bones of dead animals as tools.

The result is that they a) kill and eat a wild pig, the first meat ever eaten by the ape-men b) surround and kill the leopard that’s been menacing the tribe c) use these skills to bludgeon the leader of ‘the Others’, a smaller weaker tribe on the other side of the stream. In other words, the alien artefact has intervened decisively in the course of evolution to set man on his course to becoming a planet-wide animal killer and tool maker.

In the kind of fast-forward review section which books can do and movies can’t, Clarke then skates over the hundreds of thousands of years of evolution which follow, during which human’s teeth became smaller, their snouts less prominent, giving them the ability to make more precise sounds through their vocal cords – the beginnings of speech – how ice ages swept over the world killing most human species but leaving the survivors tougher, more flexible, more intelligent, and then the discovery of fire, of cooking, a widening of diet and survival strategies. And then to the recent past, to the Stone, Iron and Bronze ages, and sweeping right past the present to the near future and the age of space travel.

Compare and contrast the movie where all this is conveyed by the famous cut from a bone thrown into the air by an ape-man which is half way through its parabola when it turns into a space ship in orbit round earth. Prose describes, film dazzles.

2. T.M.A.-1

It is 2001. Humanity has built space stations in orbit around the earth, and a sizeable base on the moon. Dr Heywood Floyd, retired astrophysicist, is taking the journey from the American launch base in Florida, to dock with the orbiting space station, and then on to the moon base.

Clarke in his thorough, some might say pedantic, way, leaves no aspect of the trip undescribed and unexplained. How the rocket launcher works, how to prepare for blast-off, how the space station maintains a sort of gravity by rotating slowly, the precise workings of its space toilets (yes), the transfer to the shuttle down to the moon: Clarke loses no opportunity to mansplain every element of the journey, including some favourite facts familiar from the other stories I’ve read: the difference between weight and mass; how centrifugal spin creates increased gravity the further you are from the axis of spin; ‘the moon’s strangely close horizon’ (p.74); how damaging an alien artifact would be the work of a ‘barbarian’ (a thought repeated several times in Rama).

Two other features emerge. Clarke’s protagonists are always men, and they are almost always married men, keen to keep in touch with their wives, using videophones. In other words they’re not valiant young bucks as per space operas. It’s another element in the practical, level-headed approach of Clarke’s worldview.

Secondly, Clarke is a great one for meetingsChildhood’s End‘s middle sections rotate around the Secretary General of the United Nations who has a busy schedule of meetings, from his weekly conference with the Overlords to his meetings with the head of the Freedom league, and his discussion of issues arising with his number two.

A Fall of Moondust features hurried conferences between the top officials on the moon. The narrative of Rendezvous with Rama is punctuated all the way through by meetings of the committee made up of with representatives from the inhabited planets, who discuss the issues arising but also get on each other’s nerves, bicker and argue, grandstand, storm out and so on. His fondness for the set meeting, with a secretary taking notes and a chairman struggling to bring everyone into line, is another of the features which makes Clarke’s narratives seem so reassuringly mundane and rooted in reality.

Same here. Floyd is flying to the moon to take part in a top secret, high-level meeting of moon officials. He opens the meeting by conveying the President’s greetings and thanks (as people so often do in sci-fi thrillers like this).

In brief: a routine survey of the moon has turned up a magnetic anomaly in the huge crater named Tycho. (The anomaly has been prosaically named Tycho Magnetic Anomaly One – hence the section title T.M.A.-1.) When the surveyors dug down they revealed an object, perfectly smooth and perfectly black, eleven foot high, five foot wide and one and a quarter foot deep. Elementary geology has shown that the object was buried there three million years ago.

After a briefing with the moon team Floyd goes out by lunar tractor to the excavation site where digging has now fully revealed the artifact. Floyd and some others go down into the excavation and walk round the strange object which seems to absorb light. The sun is rising (the moon turns on its axis once in fourteen days) and as its light falls onto the artifact – for probably the first time in millions of years – Floyd and the others are almost deafened by five intense burst of screeching sound which cut through their radio communications.

Millions of miles away in space, deep space monitors, orbiters round Mars, a probe launched to Pluto – all record and measure an unusual burst of energy streaking across the solar system… Cut to:

3. Between Planets

David Bowman is captain of the spaceship Discovery. It was built to transport two live passengers (himself and Frank Poole) and three others in suspended animation, to Jupiter. But two years into the project the TMA-1 discovery was made and plans were changed. Now the ship is intending to use the gravity of Jupiter as a sling to propel it on towards Saturn. When they enter Saturn’s orbit the three sleeping crew members (nicknamed ‘hibernauts’) will be woken and the full team of five will have 100 days to study the super-massive gas giant, before all the crew re-enter hibernation, and wait to be picked up by Discovery II, still under construction.

Clarke is characteristically thorough in describing just about every aspect of deep space travel you could imagine, the weightlessness, the scientific reality of hibernation, the food, what the earth looks like seen from several million miles away. He gives an hour by hour rundown of Bowman and Poole’s 24-hour schedule, which is every bit as boring as the thing itself. He describes in minute astronomical detail the experience of flying through the asteroid belt and on among the moons of Jupiter, watching the sun ‘set’ behind it and other strange and haunting astronomical phenomena which no one has seen.

Then there’s a sequence in which he imagines the pictures sent back by a probe which Bowman and Poole send down into Jupiter’s atmosphere: fantastic but completely plausible imaginings. After reporting what they see from the ship, and the images relayed by the probe, the couple have done with Jupiter and set their faces to Saturn, some three months and four hundred million miles away.

The awesomeness doesn’t come from the special effects and canny use of classical music, as per the movie, but from straightforward statement of the scientific and technical facts – such as that they are now 700 million miles from earth (p.131), travelling at a speed of over one hundred thousand miles an hour (p.114).

4. Abyss

All activities on the Discovery are run or monitored by the ship’s onboard computer, HAL 9000, ‘the brain and nervous system of the ship’ (p.97). HAL stands for Heuristically programmed ALgorithmic computer. It is the most advanced form of the self-teaching neural network which, Clarke predicts, will have been discovered in the 1980s.

HAL has a nervous breakdown. He predicts the failure of the unit which keeps the radio antenna pointed at earth. Poole goes out in one of the nine-foot space pods, anchors to the side of the ship, then does a short space walk in a space suit, unbolts the failing unit and replaces it.

But back inside the ship the automatic testing devices find nothing wrong with the unit. When a puzzled Bowman and Poole report all this back to earth, Mission Control come back with the possibility that the HAL 9000 unit might have made a mistake.

Poole and Bowman ponder the terrifying possibility that the computer which is running the whole mission might be failing. Mission Control send a further message saying the two HAL 9000 units they are using to replicate all aspects of the mission back home both now recommend disconnecting the HAL computer aboard the Discovery. Earth is just in the middle of starting to give details about how to disconnect HAL when the radio antenna unit really does fail and contact with earth is broken. Coincidence? Bear in mind that HAL has been monitoring all of these conversations…

After discussing the possibility that HAL was right all along about the unit and that they are being paranoid  about him, Poole goes out for another space walk and repair. He’s in the middle of installing the new unit when he sees something out the corner of his eye, looks up and sees the pod suddenly shooting straight at him. With no time to take evasive action Poole is crushed by the ten-ton pod, his space suit ruptured, he is dead in seconds. Through an observation window Bowman sees first the pod and then Bowman’s body fly past and away from the ship.

Bowman confronts Hal, who calmly regrets that there has been accident. Mission orders demand that Bowman now revive one of the three hibernators since there must always be two people active on the ship. HAL argues with Bowman, saying this won’t be necessary, by which stage Bowman realises there is something seriously wrong. He threatens to disconnect HAL at which point the computer abruptly relents. Bowman makes his way to the three hibernator pods and has just started to revive the next in line of command, Whitehead when… HAL opens both doors of the ship’s airlock and all the air starts to flood out into space. In the seconds before the ship becomes a vacuum, Bowman manages to make it to an emergency alcove, seal himself in, jets it up with oxygen and climb into the spacesuit kept there for just such emergencies.

Having calmed down from the shock, Bowman secures his suit then climbs out, makes his way through the empty, freezing, lifeless ship to the sealed room where HAL’s circuits are stored and powered and… systematically removes all the ‘higher’ functions which permit HAL to ‘think’, leaving only the circuits which control the ship’s core functions. HAL asks him not to and, exactly as in the film, reverts to his ‘childhood’, his earliest learning session, finally singing the song ‘Daisy, Daisy, give me your answer do.’

Hours later Bowman makes a journey in the remaining pod to fix the radio antenna, then returns, closes the airlock doors and slowly restores atmosphere to the ship. Then contacts earth. And it is only now that Dr Floyd, summoned by Mission Control, tells him the true reason for the mission. Tells him about the artifact in Tycho crater. Tells him that it emitted some form of energy which all our monitors indicate was targeted at Saturn, specifically at one of its many moon, Japetus. That is what the Discovery has been sent to investigate.

And it is only in the book that Clarke is able to tell us why HAL went mad. It was the conflict between a) the demand to be at all times totally honest, open and supportive of his human crew and b) the command to keep the true purpose of the mission secret, which led HAL to have a nervous breakdown, and decide to remove one half of the conflict i.e. the human passengers, which would allow him to complete the second half, the mission to Saturn, in perfect peace of ‘mind’.

5. The Moons of Saturn

So now Bowman properly understands the mission, goes about fixing the Discovery, is in constant contact with earth and Clarke gives us an interesting chapter pondering the meaning of the sentinel and what it could have been saying. Was it a warning to its makers, or a message to invade? Where was the message sent? To beings which had evolved on or near Saturn (impossible, according to all the astrophysicists)? Or to somewhere beyond the solar system itself? In which case how could anything have travelled that far, if Einstein is correct and nothing can travel faster than light?

These last two chapters have vastly more factual information in than the movie. What the movie does without any dialogue, with stunning images and eerie music, Clarke does with his clear authoritative factual explanations. He gives us detailed descriptions of the rings of Saturn from close up, along with meticulously calculated information about perihelions and aphelions and the challenges of getting into orbit around Saturn.

But amid all this factuality is the stunning imaginative notion that the moon of Saturn, Japetus, bears on its surface a vast white eye shape at the centre of which stands an enormous copy of the TMA artifact, a huge jet black monolith maybe a mile high.

Which leads into a chapter describing the race which placed it there, which had evolved enough to develop planet travel, then space travel, then moved their minds into artificial machines and then into lattices of light which could spread across space and so, finally, into what humans would call spirit, free from time and space, at one with the universe.

It is this enormous artifact which Bowman now radios Mission Control he is about to go down to in the pod and explore.

6. Through the Star Gate

In the movie this section becomes a non-verbal experience of amazing visual effects. A book can’t do that. It has to describe and, being Clarke, can’t help also explaining, at length, what is going on.

Thus the book is much clearer and more comprehensible about what happens in this final section. Bowman guides his pod down towards the enormous artifact and is planning to land on its broad ‘top’ when, abruptly it turns from being an object sticking out towards him into a gate or cave or tunnel leading directly through the moon it’s situated on. He has just time to make one last comment to Mission Control before the pod is sucked through into the star gate and his adventure begins.

He travels along some faster-than-light portal, watching space bend around him and time slow down to a halt. He emerges into a place where the stars are more static and, looking back, sees a planet with a flat face pockmarked by black holes like the one he’s just come through, and what, when he looks closely, seems to be the wreck of a metal spaceship. He realises this must be a kind of terminal for spaceships between voyages, then the pod slowly is sucked back into one of the holes.

More faster than light travelling, then he emerges into a completely unknown configuration of stars, red dwarfs, sun clusters, the pod slows to a halt and comes to rest in… a hotel room.

Terrified, Bowman makes all the necessary checks, discovers it has earth gravity and atmosphere, gets out of the pod, takes off his spacesuit, has a shower and shave, dresses in one of the suits of clothes provided in a wardrobe, checks out the food in the fridge, or in tins or boxes of cereal.

But he discovers that the books on the coffee table have no insides, the food inside the containers is all the same blue sludge. When he lies on the bed flicking through the channels on the TV he stumbles across a soap opera which is set in this very same hotel room he is lying in. Suddenly he understands. The sentinel, after being unearthed, monitored all radio and TV signals from earth and signalled them to the Japetus relay station and on here – wherever ‘here’ is – and used them as a basis to create a ‘friendly’ environment for their human visitor.

Bowman falls asleep on the bed and while he sleeps goes back in time, recapitulating his whole life. And part of him is aware that all the information of his entire life is being stripped from his mind and transferred to a lattice of light, the same mechanism which Clarke explained earlier in the novel, was the invention of the race which created the sentinel. Back, back, back his life reels until – in a miraculous moment – the room contains a baby, which opens its mouth to utter its first cry.

The crystal monolith appears, white lights flashing and fleering within its surface, as we saw them do when it first taught the man-apes how to use tools and eat meat, all those hundreds of thousands of years ago.

Now it is probing and instructing the consciousness of Bowman, guiding him towards the next phase. The monolith disappears. The being that was Bowman understands, understands its meaning, understands how to travel through space far faster than the primitive star gate he came here by. All he needs is to focus his ‘mind’ and he is there.

For a moment he is terrified by the immensity of space and the infinity of the future, but then realises he is not alone, becomes aware of some force supporting and sustaining him, the guiders.

Using thought alone he becomes present back in the solar system he came from. Looking down he becomes aware of alarm bells ringing and flotillas of intercontinental missiles hurtling across continents to destroy each other. He has arrived just as a nuclear war was beginning. Preferring an uncluttered sky, he abolishes all the missiles with his will.

Then he waited, marshalling his thoughts and brooding over his still untested powers. For though he was master of the world, he was not quite sure what to do next.

But he would think of something.

And those are the final sentences of the book.

Thoughts

Like Childhood’s End the book proceeds from fairly understandable beginnings to a mind-boggling, universe-wide ending, carrying the reader step by step through what feels almost – if you let it take control of your imagination – like a religious experience.

Eliot Fremont-Smith reviewing the book in the New York Times, commented that it was ‘a fantasy by a master who is as deft at generating accelerating, almost painful suspense as he is knowledgeable and accurate (and fascinating) about the technical and human details of space flight and exploration.’

That strikes me as being a perfect summation of Clarke’s appeal – the combination of strict technical accuracy, with surprisingly effective levels of suspense and revelation.

His concern for imagining the impact of tiny details reminds me of H.G. Wells. In the Asimov and Blish stories I’ve been reading, if there’s a detail or the protagonist notices something, it will almost certainly turn out to be important to the plot. Clarke is the direct opposite. Like Wells his stories are full of little details whose sole purpose is to give the narrative a terrific sense of verisimilitude.

To pick one from hundreds, I was struck by the way that Dr Floyd finds wearing a spacesuit on the surface of the moon reassuring. Why? Because its extra weight and stiffness counter the one sixth gravity of the moon, and so subconsciously remind him of the gravity on earth. Knowing that fact, and then deploying it in order to describe the slight but detectable impact it has on one of his characters’ moods,strikes me as typical Clarke.

Hundreds of other tiny but careful thinkings-though of the situations which his characters find themselves in, bring them home and make them real.

And as to suspense, Clarke is a great fan of the simple but straightforward technique of ending chapters with a threat of disaster. E.g. after his first space walk Poole returns to the ship confident that he has fixed the problem.

In this, however, he was sadly mistaken. (p.140)

Although this is pretty cheesy, it still works. He is a master of suspense. The three other novels I’ve read by him are all thrilling, and even though I’ve seen the movie umpteen times and so totally know the plot, reading Clarke’s book I was still scared when HAL started malfunctioning, and found Bowman’s struggle to disconnect him thrilling and moving.

As to the final section, when Bowman travels through the star gate and is transformed into a new form of life, of celestial consciousness, if you surrender to the story the experience is quite mind-boggling.

It also explains a lot – and makes much more comprehensible – what is left to implication and special effects in the movie.

Forlorn predictions

Clarke expects that by 2001:

  • there will be a permanent colony on the moon, where couples will be having and bringing up children destined never to visit the earth
  • there will also be a colony on Mars
  • there will be a ‘plasma drive’ which allows for super-fast spaceship travel to other planets

I predict there will never be a colony on the moon, let alone Mars, and no ‘plasma drive’.

On the plus side, Clarke predicts that by 2001 there will be a catastrophic six billion people on earth, which will result in starvation, and food preservation policies even in the rich West. In the event there were some 6.2 billion people alive in 2001, but although there were the usual areas of famine in the world, there wasn’t the really widespread food shortages Clarke predicted.

The future has turned out to be much more human, mundane, troubled and earth-bound than Clarke and his generation expected.

Trailer

Credit

All references are to the 2011 reprint of the 1998 Orbit paperback edition of 2001: A Space Odyssey by Arthur C. Clarke, first published by Hutchinson in 1968.


Related links

Arthur C. Clarke reviews

  • Childhood’s End (1953) a thrilling narrative involving the ‘Overlords’ who arrive from space to supervise mankind’s transition to the next stage in its evolution
  • A Fall of Moondust (1961) a pleasure tourbus on the moon is sucked down into a sink of moondust, sparking a race against time to rescue the trapped crew and passengers
  • 2001: A Space Odyssey (1968) a panoramic narrative which starts with aliens stimulating evolution among the first ape-men and ends with a spaceman being transformed into galactic consciousness
  • Rendezvous With Rama (1973) it is 2031 and when an alien object, a cylinder 15 k wide by 50 k long, enters the solar system, and Commander Norton and the crew of Endeavour are sent to explore it

Other science fiction reviews

1888 Looking Backward 2000-1887 by Edward Bellamy – Julian West wakes up in the year 2000 to discover a peaceful revolution has ushered in a society of state planning, equality and contentment
1890 News from Nowhere by William Morris – waking from a long sleep, William Guest is shown round a London transformed into villages of contented craftsmen

1895 The Time Machine by H.G. Wells – the unnamed inventor and time traveller tells his dinner party guests the story of his adventure among the Eloi and the Morlocks in the year 802,701
1896 The Island of Doctor Moreau by H.G. Wells – Edward Prendick is stranded on a remote island where he discovers the ‘owner’, Dr Gustave Moreau, is experimentally creating human-animal hybrids
1897 The Invisible Man by H.G. Wells – an embittered young scientist, Griffin, makes himself invisible, starting with comic capers in a Sussex village, and ending with demented murders
1898 The War of the Worlds – the Martians invade earth
1899 When The Sleeper Wakes/The Sleeper Wakes by H.G. Wells – Graham awakes in the year 2100 to find himself at the centre of a revolution to overthrow the repressive society of the future
1899 A Story of the Days To Come by H.G. Wells – set in the same London of the future described in the Sleeper Wakes, Denton and Elizabeth fall in love, then descend into poverty, and experience life as serfs in the Underground city run by the sinister Labour Corps

1901 The First Men in the Moon by H.G. Wells – Mr Bedford and Mr Cavor use the invention of ‘Cavorite’ to fly to the moon and discover the underground civilisation of the Selenites
1904 The Food of the Gods and How It Came to Earth by H.G. Wells – two scientists invent a compound which makes plants, animals and humans grow to giant size, leading to a giants’ rebellion against the ‘little people’
1905 With the Night Mail by Rudyard Kipling – it is 2000 and the narrator accompanies a GPO airship across the Atlantic
1906 In the Days of the Comet by H.G. Wells – a passing comet trails gasses through earth’s atmosphere which bring about ‘the Great Change’, inaugurating an era of wisdom and fairness, as told by narrator Willie Leadford
1908 The War in the Air by H.G. Wells – Bert Smallways, a bicycle-repairman from Bun Hill in Kent, manages by accident to be an eye-witness to the outbreak of the war in the air which brings Western civilisation to an end
1909 The Machine Stops by E.M. Foster – people of the future live in underground cells regulated by ‘the Machine’ until one of them rebels

1912 The Lost World by Sir Arthur Conan Doyle – Professor Challenger leads an expedition to a plateau in the Amazon rainforest where prehistoric animals still exist
1912 As Easy as ABC by Rudyard Kipling – set in 2065 in a world characterised by isolation and privacy, forces from the ABC are sent to suppress an outbreak of ‘crowdism’
1913 The Horror of the Heights by Arthur Conan Doyle – airman Captain Joyce-Armstrong flies higher than anyone before him and discovers the upper atmosphere is inhabited by vast jellyfish-like monsters
1914 The World Set Free by H.G. Wells – A history of the future in which the devastation of an atomic war leads to the creation of a World Government, told via a number of characters who are central to the change
1918 The Land That Time Forgot by Edgar Rice Burroughs – a trilogy of pulp novellas in which all-American heroes battle ape-men and dinosaurs on a lost island in the Antarctic

1921 We by Evgeny Zamyatin – like everyone else in the dystopian future of OneState, D-503 lives life according to the Table of Hours, until I-330 wakens him to the truth
1925 Heart of a Dog by Mikhail Bulgakov – a Moscow scientist transplants the testicles and pituitary gland of a dead tramp into the body of a stray dog, with disastrous consequences
1927 The Maracot Deep by Arthur Conan Doyle – a scientist, engineer and a hero are trying out a new bathysphere when the wire snaps and they hurtle to the bottom of the sea, there to discover…

1930 Last and First Men by Olaf Stapledon – mind-boggling ‘history’ of the future of mankind over the next two billion years
1932 Brave New World by Aldous Huxley
1938 Out of the Silent Planet by C.S. Lewis – baddies Devine and Weston kidnap Ransom and take him in their spherical spaceship to Malacandra aka Mars,

1943 Perelandra (Voyage to Venus) by C.S. Lewis – Ransom is sent to Perelandra aka Venus, to prevent a second temptation by the Devil and the fall of the planet’s new young inhabitants
1945 That Hideous Strength: A Modern Fairy-Tale for Grown-ups by C.S. Lewis– Ransom assembles a motley crew to combat the rise of an evil corporation which is seeking to overthrow mankind
1949 Nineteen Eighty-Four by George Orwell – after a nuclear war, inhabitants of ruined London are divided into the sheep-like ‘proles’ and members of the Party who are kept under unremitting surveillance

1950 I, Robot by Isaac Asimov – nine short stories about ‘positronic’ robots, which chart their rise from dumb playmates to controllers of humanity’s destiny
1950 The Martian Chronicles – 13 short stories with 13 linking passages loosely describing mankind’s colonisation of Mars, featuring strange, dreamlike encounters with Martians
1951 Foundation by Isaac Asimov – the first five stories telling the rise of the Foundation created by psychohistorian Hari Seldon to preserve civilisation during the collapse of the Galactic Empire
1951 The Illustrated Man – eighteen short stories which use the future, Mars and Venus as settings for what are essentially earth-bound tales of fantasy and horror
1952 Foundation and Empire by Isaac Asimov – two long stories which continue the future history of the Foundation set up by psychohistorian Hari Seldon as it faces down attack by an Imperial general, and then the menace of the mysterious mutant known only as ‘the Mule’
1953 Second Foundation by Isaac Asimov – concluding part of the ‘trilogy’ describing the attempt to preserve civilisation after the collapse of the Galactic Empire
1953 Earthman, Come Home by James Blish – the adventures of New York City, a self-contained space city which wanders the galaxy 2,000 years hence powered by spindizzy technology
1953 Fahrenheit 451 by Ray Bradbury – a masterpiece, a terrifying anticipation of a future when books are banned and professional firemen are paid to track down stashes of forbidden books and burn them
1953 Childhood’s End by Arthur C. Clarke – a thrilling tale of the Overlords who arrive from space to supervise mankind’s transition to the next stage in its evolution
1954 The Caves of Steel by Isaac Asimov – set 3,000 years in the future when humans have separated into ‘Spacers’ who have colonised 50 other planets, and the overpopulated earth whose inhabitants live in enclosed cities or ‘caves of steel’, and introducing detective Elijah Baley to solve a murder mystery
1956 The Naked Sun by Isaac Asimov – 3,000 years in the future detective Elijah Baley returns, with his robot sidekick, R. Daneel Olivaw, to solve a murder mystery on the remote planet of Solaria
1956 They Shall Have Stars by James Blish – explains the invention – in the near future – of the anti-death drugs and the spindizzy technology which allow the human race to colonise the galaxy
1959 The Triumph of Time by James Blish – concluding story of Blish’s Okie tetralogy in which Amalfi and his friends are present at the end of the universe

1962 A Life For The Stars by James Blish – third in the Okie series about cities which can fly through space, focusing on the coming of age of kidnapped earther, young Crispin DeFord, aboard New York

1971 Mutant 59: The Plastic Eater by Kit Pedler and Gerry Davis – a genetically engineered bacterium starts eating the world’s plastic

1980 Russian Hide and Seek by Kingsley Amis – in an England of the future which has been invaded and conquered by the Russians, a hopeless attempt to overthrow the occupiers is easily crushed
1981 The Golden Age of Science Fiction edited by Kingsley Amis – 17 classic sci-fi stories from what Amis considers the Golden Era of the genre, namely the 1950s

The Golden Age of Science Fiction edited by Kingsley Amis (1981)

Science fiction is a pessimistic medium… Most of it is about things going wrong. (Amis in his preface)

Amis

Kingsley Amis was a grumpy old bugger. This judgement is based not only on reading his articles and reviews when he was still alive (he died in 1995), but having read and reviewed all twenty of his novels for this blog.

Amis was deliberately middle-brow and flexible. He wrote a James Bond novel (under the pseudonym Robert Markham), a lot of light poetry, reviews and articles, as well as several odd science fiction novels.

In fact he was a science fiction hound, a real addict, and tells us that he leaped at the chance to deliver a series of lectures on the subject at Princeton University in 1959. These were then published as a book purporting to review the history and state of science fiction as it had led up to the state of the genre in 1960, garishly titled New Maps of Hell.

Twenty years after New Maps of Hell, in 1981, Amis was asked to make a selection of favourite science fiction short stories and to write an introduction. Hence this book.

Amis’s introduction

With typical glumness, Amis reckons science fiction has had its glory days and is in decline. He judges this decline to have started at more or less the moment he delivered those lectures, back at the start of the 1960s. He describes how, in the 1940s and 1950s, science fiction belonged to ‘an embattled few’ – hard-core fans who read everything they could get their hands on, despite the sniggers of their parents or teachers. A bit like the ‘hot jazz’ which he and his buddy Philip Larkin liked listening to, while their mothers and girlfriends told them they really ought to be listening to Haydn.

But all this changed in the 1960s. Up till then Amis and other fans had called it SF. During the 60s it became rebranded as ‘sci-fi’, symptomatic of the way it got infected with all the other radical experiments of the decade.

Suddenly there was ‘experimental’ and ‘avant-garde’ ‘sci-fi’, as there was free poetry, rock music, women’s lib and hosts of other innovations which Mr Grumpy objects to. The first two university courses on science fiction were opened in 1961, and Amis thinks that as soon as you start teaching literature or film, you kill its originality.

Only twelve years separate the hilariously kitsch Forbidden Planet (1956) from the slick and sophisticated 2001: A Space Odyssey (released in 1968, and which Amis found repellently self-indulgent) but they inhabit different cultural universes.

The New Wave

The young writers with their trendy experimental approaches to science fiction who came in with the 1960s, became known as the New Wave. Fans argue to this day about when New Wave started, but most agree a tipping point was when Michael Moorcock became editor of New Worlds magazine in 1964, and Moorcock, along with J.G. Ballard and Brian Aldiss, were the prime movers of British New Wave. All three moved away from ‘hard’ science fiction stories about space ships and robots and aliens, showing more interest in literary effects and psychology, often in a very garish late-60s, tricksy sort of way.

Planetary exploration

Another problem which the SF writers of the 1960s faced was that a lot of science fiction came true. In the 1960s men actually started rocketing into space and in 1969 walked on the moon, thus killing all kinds of fantasies with their dull discovery that space was empty and bathed in fatal radiation, while the moon is just a dusty rock. So no fantastic civilisations and weird Selenites after all. In the story Sister Planet in this collection, Poul Anderson imagines Venus to consist of one huge, planet-wide ocean teeming with intelligent life, where men can stride around requiring only respirators to breathe. But when information started to come back from the Mariner series of probes, the first of which flew by in 1962, and the Venera 7 probe which actually landed on the surface in 1970, Venus turned out to be a waterless rock where the atmospheric pressure on the surface is 92 times that of earth, and the temperature is 462 C.

Fiction becomes fact

Meanwhile, in terms of terrestrial gadgets and inventions – the kind of mind-liberating technological innovations which festoon H.G. Wells’s fantastic prophecies – well, jet planes came in, along with intercontinental travel and it turned out to be glamorous but in a, well, yawn, touristy kind of way. Everyone got coloured televisions, but these weren’t used for announcements by the World State or amazing educational programmes; they were used to sell soap powder and bubble gum. Satellites were launched and people were amazed by the first live global broadcasts, but none of this led mankind onto some higher level of culture and civilisation, as so many thousands of sci-fi stories had predicted. Now we have digital communication with anyone on the planet, but the biggest content area on the internet is pornography, closely followed by cats who look like Hitler.

To sum up: a lot of what had seemed like exciting technical predictions in the 1940s had turned into commonplaces by the 1960s. As Amis pithily puts it, ‘Terra incognita was turning into real estate.’

So you can see why the New Wave wanted to take a new approach and look for the weird and alien here on earth, particularly Ballard. By the mid-70s the New Wave was itself declared to be over (about the same time that post-war Serialism in classical music breathed its last gasp), at the same time that a lot of the political and cultural impedimenta of the post-war years ran out of steam. As I view it, this led to a decade of doldrums (the 1970s), and then the appearance, during the 1980s, of bright new commercial styles, Post-modernism in art and literature and architecture, the importation of Magical Realism in fiction, and a new era of sci-fi blockbusters in cinema, the rise of computer aided animation which has transformed the look and feel of films, and to an explosion of all kinds of genres and cross-fertilisations in writing.

Specific examples

But to Amis back in 1980, he says science fiction suffers from ‘gross commercialism’, and uses the Terra incognita argument to explain why many even of the New Wave writers had dried up or gone into alternative forms – Arthur C. Clarke ceasing to write novels, Aldiss writing histories of the genre, and Ballard turning out never to have really been a sci-fi writer, more a writer about modern psychosis who started out by using sci-fi tropes, before moving on.

All this goes to explain why the stories Amis selected for this collection are all from the 1950s (1948 to 1962, to be exact) – from the decade when sci-fi writers had racked up a tradition of sorts to build on, had achieved a mature treatment of recognised tropes – but before those tropes were burned out from over-use and the 1960s ruined everything with its silly experimentalism. You can strongly disagree with this view, but at least it’s a clear defined view, put forward with evidence and arguments.

The short stories

He Walked Around the Horses by H. Beam Piper (1948) (American)

It is 1809. A series of letters from officials in Imperial Austria tell the tale of Benjamin Bathurst, who claims to be a British government envoy who, we slowly realise, has somehow got transported from out 1809 to a parallel history in which the Americans lost the war of independence, there was no French Revolution, no Napoleon, no wars raging across Europe, and so Herr Bathurst is regarded as a lunatic.

The Xi Effect by Philip Latham (1950) (Pseudonym used for his sf by American astronomer Robert Shirley Richardson)

Physicists Stoddard and Arnold discover that radiation above a certain frequency is no longer being detected. Radio stations are becoming unavailable. They measure the eclipse of one of Jupiter’s moons as happening absurdly nearby. Suddenly they think of Friedmann and his theory of the Xi Effect, namely that space isn’t continuous but made up of ‘clots’, clots which can be disrupted by bigger-scale events. Stoddard and Arnold and then everyone else learns that the world and the solar system are shrinking. Since everything is staying in proportion relative to everything else you’d have thought that wouldn’t be a problem except that the one thing which can’t shrink is electro-magnetic radiation. In other words, the world is getting too small for light to travel in it. One by one all the colours disappear, and then everyone is left in universal blackness.

The Quest for Saint Aquin by Anthony Boucher (1951) (American)

After a nuclear apocalypse a ‘monk’ is sent by ‘the pope’ to find the body of a supposed saint in the hills outside San Francisco.

It’s a Good Life by Jerome Bixby (1953) (American)

Genuinely upsetting story in which a child with telepathy and unlimited powers is born and, while still young, either destroys the world or transports his small town into some void wherein the remaining inhabitants must think nothing but positive thoughts – repeating to themselves ‘it is a good world’ for fear that the little monster – Anthony – will detect negative thoughts and turn them into something unspeakable.

The Nine Billion Names of God by Arthur C. Clarke (1953) (English)

A computer company supplies its latest model to a Tibetan lamasery whose abbot tells the chief exec that they will use it to work through every permutation of names for God. They have a belief that, once all the names of God have been expressed, the need for a planet and humanity will cease and the universe will move on to the next stage.

Months later, the two bored technicians tasked with overseeing the installation and running of the machine are relieved to be making their way to the little Tibetan airport to return Stateside when the computer reaches the end of its run and… the world comes to an end.

Specialist by Robert Sheckley (1953) (American)

Interesting description of a galactic spaceship made up of living parts which all perform specialist functions e.g. Walls, Eye, Tracker, Feeder. When their ‘Pusher’ dies in an accident they trawl nearby planetary systems for a new one and, of course, come to earth, where they kidnap a guy who is out camping under the stars, and induct him into the galactic code of co-operation.

Student Body by F. L. Wallace (1953) (American)

Colonists arrive on a new planet where the Chief Exec is keen to get biologist Dano Marin to manage infestations of mice and rats which attack the crops and stores. Slowly Marin realises they are dealing with a species which can mutate at need, almost instantly, in order to survive and which will always manage to evolve into shapes which can elude them. Worse, he realises it will have stowed away on the earlier reconnaisance ships and have made its way back to earth.

The Game of Rat and Dragon by Cordwainer Smith (1954) (pen-name of American author Paul Myron Anthony Linebarger)

Deep space travel reveals vicious entities which attack man’s ships, which get nicknamed ‘dragons’. The only way to kill them is with light bombs which disintegrate their bodies, but it all happens so fast that only the handful of humans who have telepathic powers can manage to be plugged into the ‘pin sets’ which detect the dragons; and the whole effort went up a notch when it was discovered that some cats can be in telepathic unison with the humans, and have even faster reflexes.

The Tunnel under the World by Frederik Pohl (1955) (American)

Maybe the best story, relatively long and persuasive i.e. you get totally drawn into it.

Guy Burckhardt wakes up on June 15 from a nightmare of an explosion, then goes about his humdrum life in the small town American town of Tylerton, dominated by its state-of-the-art chemical works which is run mostly by the recorded brainwaves of technicians. A new guy in the office shops tries to hustle him a new brand of cigarettes. Later a lorry stops in the street and blares out ads for Feckles Fridges. A flustered man named Swanson accosts him on the street then runs away.

Then he wakes up on June 15 from a nightmare, and goes about his day. New cigarettes, lorry ads, flustered Swanson. That night the fuse blows and, rooting around in the cellar, he discovers that behind the brick walls is metal. And under the floor. The reader begins to wonder if he is in some kind of alien prison. He is down there when overcome by sleep.

Next morning he wakes up remembering everything from the day before except that… his wife thinks it is June 15, the radio says it is June 15, the newspaper says it is June 15. On the street Swanson finds him and, discovering that Burckhardt is confused, takes him through shops and into a cinema, all the time telling him that ‘they’ will be after him. they exit the auditorium, Swanson takes him through corridors, into the manager’s office, then opens a closet door into… a vast steel tunnel stretching in both directions.

Swanson thinks it must be Martians? Is it aliens? Or the Chinese who everyone in the 1950s were so terrified of? Read it yourself.

A Work of Art by James Blish (1956) (American)

Richard Strauss is brought back to life 200 years in the future. He immediately wants to carry on composing and Blish gives a very good analysis of the composer’s music, its characteristics, what he looks for in a libretto and so on and the whole process of composing a new opera.

But at its premiere, the applause is not for the composer, but for Dr Kris, the mind sculptor who has, in fact, used all the traits of the composer to create him and impose him on the mind of a perfectly ordinary unmusical man, Jerom Bosch. At a click of Kris’s fingers, Bosch will revert to his normal workaday self.

The Country of the Kind by Damon Knight (1956) (American)

A rare thing, a first person narrator. In a perfect society of the future (after ‘the Interregnum’) he has been born a brute and a sadist, capable of killing and injuring and defacing while all around him are placid and calm and sensitive. We see, from his point of view, how intolerable and anguished his existence is, forced to live among ‘the dulls’.

Sister Planet by Poul Anderson (1959) (American)

This is a long, involving and bitingly pessimistic story. A small colony of scientists is established on a platform floating on Venus’s endless stormy ocean. They have made contact with ‘cetoids’, dolphin-like creatures and some kind of exchange goes on i.e. the humans leave paintings, sound recordings and so on which the cetoids take off in their mouths, and the cetoids return with various objects, including rare and precious ‘firestones’. These are so precious that ferrying them back to earth and selling them has so far funded the scientific research.

In among their practical duties, the half dozen or so scientists on the outstation chat about how overcrowded and polluted and violent earth is becoming. The main figure among them, Nat Hawthorne is particularly sensitive and close to the cetoids. One day he is astonished when the most friendly of them, who he’s named Oscar, nudges at his feet (on the pontoon which stretches out from the base, where they distribute goodies to the cetoids and receive the jewels in return, level with the ocean and often slopped over by waves) indicating he wants to give him a ride.

Hawthorne puts on breathing apparatus and Oscar takes him deep under the sea to show him a vast coral cathedral which appears to have been shaped, or grown, by the cetoids. there is no doubt that they are ‘intelligent’.

Back in the crew quarters of the colony, he is about to tell everyone about his encounter, when the quiet, intense Dutch scientist Wim Dykstra bursts in to make a major announcement. He has been analysing Venus’s core and has realised that it is on the unstable edge of making a quantum leap upwards in size. If it did that, it would project magma up through the sea creating continents and the presence of rocks would absorb carbon dioxide from the (currently toxic) atmosphere. In other words it could be ‘terraformed’, made fit for human inhabitation – an overflow for what has become a poisoned earth.

it is then that Hawthorne tells the roomful of colonists about his discovery, that the cetoids are undeniably intelligent and creative. At which point there is an earnest discussion about man’s right to colonise new planets, even at the expense of the natives – all of which made me think of contemporary, 2018, discussions about colonialism and racial oppression etc. Reluctantly Dykstra agrees to suppress his work in order to let the cetoids live.

But Hawthorne is gripped by a kind of panic fear. Sooner or later more scientists will come to Venus. They will repeat his experiments. Sooner or later humans will realise they can transform Venus for their own use. Tortured by this knowledge, Hawthorne blows up and sinks the research station, flees in a mini submarine and, when the cetoids come to investigate, slaughters them with a laser machine gun. Then submerges to go and blow up their beautiful coral cathedrals. Before calling the ferry ship which is in orbit down to pick him up. He will claim the cetoids blew up the centre despite his attempts to stop them.

His aim is to demonstrate to earth that Venus is a violent environment which cannot be colonised. And to show the cetoids that humans are murdering barbarians who cannot be trusted.

To save the cetoids – he has to destroy them and their cultural achievements.

The Voices of Time by J. G. Ballard (1960) (English)

A classic expression of Ballard’s interest in entropy and decline. Among the empty swimming pools of some desert American town, scientists go about their work in alienated isolation from each other. A plague of narcolepsy has attacked humanity. More and more people are falling asleep never to waken, the central figure, Powers, keeps a diary of the way he, too, is falling asleep earlier and earlier, his days are getting shorter and shorter. In what time he has left he conducts obscure experiments on plants and animals which seem to mutate at an accelerated rate if exposed to near fatal doses of radiation. He has a typically distant, autistic ‘relationship’ with a patient whose brain he operated on and who now is collecting the last works of art, books and so on by famous artists, writers and such. And has discovered that astronomical research centres have come across series of numbers being sent from apparently different locations around the universe, all of which are running down, like countdowns.

The Machine that Won the War by Isaac Asimov (1961) (American)

A short and characteristically tricksy Asimov story. It is the end of the war against the Denebians. Everyone credits victory to the vast supercomputer, the Multivac, which processed all the information and provided pinpoint accurate decisions about the war.

Executive Director of the Solar Federation, Lamar Swift, has gathered the key men in the team who ran Multivac to celebrate, namely Henderson and Jablonksy. But as both hold their champagne glasses, one by one they reveal that the data they received was never good enough, the sources around the solar system and beyond were too scattered, information came in too slowly… and that the head of the team processing it never trusted them, and so falsified many of the figures.

But instead of being shocked, Swift smile and says, he thought as much. He made all the key decisions which won the war by using a much older technology. And he takes out a coin, flips it with his thumb, covers it as it lands in his palms, and asks: ‘Gentlemen – heads or tails?’

Harrison Bergeron by Kurt Vonnegut (1961) (American)

A short glib story set in 2018 when everyone is equal because everyone is handicapped by the Handicapper General. Fast athletic people are weighed down by weights. Tall people forced to stoop. Beautiful people wear face masks. Clever people have earpieces fitted which emit piercing noises every 30 seconds. Thus everyone is reduced to the same level, and is equal. Anyone tampering with any of this equality equipment is arrested and imprisoned.

George and Hazel Bergeron’s son, Harrison, was born unusually tall and handsome. He was immediately locked up. The trigger for this short story is George and Hazel settling down to watch TV (George’s thought processes continually interrupted by the screeches in his ear, to prevent him being too clever) and hearing on the news that their son has escaped from prison.

Then he bursts into the TV studio and throws off his restraints, the handicap harness which weighs him down, the rubber mask which makes him ugly – to reveal that he is a tall god. He declares to the watching audience that he is the Emperor, who must be obeyed.

He had interrupted a live broadcast of a ballet and now he asks who among the ballerinas wants to be his wife. One comes forward, throws off her face mask and feet cripplers to reveal that she is beautiful and elegant. Together they start dancing a beautiful ballet of freedom.

At which point the Handicapper General, Diana Moon Glampers, bursts into the studio and machine guns both of them dead. The TV goes black. Loud sounds burst in George’s ear. He goes to get a beer from the fridge. Loud sounds interrupt him on the way back. By the time he’s back on the sofa he has a sense that something sad happened on the TV but neither he nor his wife can remember what.

The Streets of Ashkelon by Harry Harrison (1962) (American)

Trader John Garth is happy living alone on Wesker’s World, dealing with the slow but logical alien inhabitants, the Wesker amphibians, who have learned to speak English.

One day a fellow trader stops by (his spaceship causing hundreds of square metres of devastation) to drop off a priest. Garth tries to prevent him landing, then is very rude to him. To his horror, the slow logical Wesker creatures are awestruck by the priest and the stories he has to tell about God their father and how they are saved. Garth is a typical trader, rough and ready, a hard drinker, but he has been honest with the Wesker creatures and told them as much about the universe and earth as he thought wise.

One day Garth is called along to a meeting the Weskers are having with the priest. In their slow logical way they have come to the conclusion that the priest needs to prove his religion. The Bible – which he has given them to study – brims over with examples of miracles which God was happy to perform to prove his existence. Surely he will perform at least one miracle to convert an entire new planet and save an entire species.

Suddenly Garth sees where this is heading and leaps up to try and bundle the priest out of the meeting hall but he is himself overwhelmed by the Wesker creatures and tied up, from which powerless state he has to watch the creatures overcome the priest and very methodically nail him up to a cross, just like the pictures in the Bible he had given them, the Weskers expecting him to be resurrected.

But of course he isn’t. Days later, still tied up and in a pitch black lumber room, Garth finds the most sympathetic of the Weskers undoing his ropes and telling him to flee in his space ship. Having failed with the priest the Weskers have decided to experiment with him next.

The Wesker asks: ‘He will rise again won’t he?’ ‘No,’ replies Wesker. ‘Then we will not be saved and not be made pure?’ asks the Wesker. ‘You were pure’, Garth sadly replies. ‘You were pure, but now…’ ‘We are murderers,’ replies the Wesker.

Old Hundredth by Brian Aldiss (1963) (English)

This is the most poetic of the stories, Aldiss deliberately using onomatopeia and rhyme in his prose, as well as rich verbal pictures, to convey a dreamlike scenario.

In the far distant future the Moon has left the earth and earth and Venus orbit each other. Humans have long ago left the planet which is now populated by a mix of of animals and ”Impures’, intelligent creatures created by human experimenters on Venus.

Dandi Lashadusa is a giant sloth who traipses round the desert world seeking out musicolumns, insubstantial pillars into which the last people converted themselves, and which become audible music when life forms come close enough to them.

She is guided and advised by a mentor who she is telepathically in touch with, who is slowly revealed to be a dolphin living in a coral cell.


Almost all the stories – 14 out of 17 – are by Americans, the other three by Brits i.e. all very anglophone i.e. wasn’t there any Russian, French, German etc sci-fi during the period? Even in translation?

That’s probably something which came in to rejuvenate the genre after Amis’s day, particularly stories from Russia and the Eastern bloc.

The pros and cons of science fiction

Is Amis right when he says: ‘Science fiction is a pessimistic medium… Most of it is about things going wrong’? Well, on the evidence here, Yes. The Xi Effect, Sister Planet, The Streets of Ashkelon, Student Body and, especially It’s a Good Life, which I found very disturbing – they are extremely negative and pessimistic. But then gloomy Amis chose them. Is the genre as a whole pessimistic? Well… I’d make a case that most of literature is pessimistic. I’m looking at F. Scott Fitzgerald books next to Flaubert’s on my shelves. Not many happy endings there.

Maybe you could argue that there is a kind of ‘global conceit’ about science fiction. In ‘ordinary’ novels one or two people may die; in a science fiction story it is likely to be a whole world, as the world comes to an end in the Clarke story, or man corrupts an entire species as in the Harry Harrison.

Science fiction may be more apocalyptically pessimistic than other types of fiction. This is one of its appeals to the adolescent mind – the sheer sense of scale and the world-ending nihilism. But is at the same time one of the reasons it used to be looked down on. As a flight from the trickier complexities of real human relations in the here and now, the kind of thing supposedly tackled by ‘proper’ fiction.

But all this is to overlook the positive, uplifting and inspiring aspect of science fiction, the teenage sense of exuberance and escape and release conveyed by some of the stories. The sense of the genuinely fantastical and imaginative, that life is stranger and richer and weirder than non-sci-fi readers can ever realise.

A feeling conveniently expressed in one of the stories here:

As a boy he had loved to read tales of time travel and flights to other planets, and the feeling that something transcendent was lurking around the corner had never entirely left him. (The Xi Effect, p.65)


Related links

Other science fiction reviews

1888 Looking Backward 2000-1887 by Edward Bellamy – Julian West wakes up in the year 2000 to discover a peaceful revolution has ushered in a society of state planning, equality and contentment
1890 News from Nowhere by William Morris – waking from a long sleep, William Guest is shown round a London transformed into villages of contented craftsmen

1895 The Time Machine by H.G. Wells – the unnamed inventor and time traveller tells his dinner party guests the story of his adventure among the Eloi and the Morlocks in the year 802,701
1896 The Island of Doctor Moreau by H.G. Wells – Edward Prendick is stranded on a remote island where he discovers the ‘owner’, Dr Gustave Moreau, is experimentally creating human-animal hybrids
1897 The Invisible Man by H.G. Wells – an embittered young scientist, Griffin, makes himself invisible, starting with comic capers in a Sussex village, and ending with demented murders
1898 The War of the Worlds – the Martians invade earth
1899 When The Sleeper Wakes/The Sleeper Wakes by H.G. Wells – Graham awakes in the year 2100 to find himself at the centre of a revolution to overthrow the repressive society of the future
1899 A Story of the Days To Come by H.G. Wells – set in the same London of the future described in the Sleeper Wakes, Denton and Elizabeth fall in love, then descend into poverty, and experience life as serfs in the Underground city run by the sinister Labour Corps

1901 The First Men in the Moon by H.G. Wells – Mr Bedford and Mr Cavor use the invention of ‘Cavorite’ to fly to the moon and discover the underground civilisation of the Selenites
1904 The Food of the Gods and How It Came to Earth by H.G. Wells – two scientists invent a compound which makes plants, animals and humans grow to giant size, leading to a giants’ rebellion against the ‘little people’
1905 With the Night Mail by Rudyard Kipling – it is 2000 and the narrator accompanies a GPO airship across the Atlantic
1906 In the Days of the Comet by H.G. Wells – a passing comet trails gasses through earth’s atmosphere which bring about ‘the Great Change’, inaugurating an era of wisdom and fairness, as told by narrator Willie Leadford
1908 The War in the Air by H.G. Wells – Bert Smallways, a bicycle-repairman from Bun Hill in Kent, manages by accident to be an eye-witness to the outbreak of the war in the air which brings Western civilisation to an end
1909 The Machine Stops by E.M. Foster – people of the future live in underground cells regulated by ‘the Machine’ until one of them rebels

1912 The Lost World by Sir Arthur Conan Doyle – Professor Challenger leads an expedition to a plateau in the Amazon rainforest where prehistoric animals still exist
1912 As Easy as ABC by Rudyard Kipling – set in 2065 in a world characterised by isolation and privacy, forces from the ABC are sent to suppress an outbreak of ‘crowdism’
1913 The Horror of the Heights by Arthur Conan Doyle – airman Captain Joyce-Armstrong flies higher than anyone before him and discovers the upper atmosphere is inhabited by vast jellyfish-like monsters
1914 The World Set Free by H.G. Wells – A history of the future in which the devastation of an atomic war leads to the creation of a World Government, told via a number of characters who are central to the change
1918 The Land That Time Forgot by Edgar Rice Burroughs – a trilogy of pulp novellas in which all-American heroes battle ape-men and dinosaurs on a lost island in the Antarctic

1921 We by Evgeny Zamyatin – like everyone else in the dystopian future of OneState, D-503 lives life according to the Table of Hours, until I-330 wakens him to the truth
1925 Heart of a Dog by Mikhail Bulgakov – a Moscow scientist transplants the testicles and pituitary gland of a dead tramp into the body of a stray dog, with disastrous consequences
1927 The Maracot Deep by Arthur Conan Doyle – a scientist, engineer and a hero are trying out a new bathysphere when the wire snaps and they hurtle to the bottom of the sea, there to discover…

1930 Last and First Men by Olaf Stapledon – mind-boggling ‘history’ of the future of mankind over the next two billion years
1932 Brave New World by Aldous Huxley
1938 Out of the Silent Planet by C.S. Lewis – baddies Devine and Weston kidnap Ransom and take him in their spherical spaceship to Malacandra aka Mars,

1943 Perelandra (Voyage to Venus) by C.S. Lewis – Ransom is sent to Perelandra aka Venus, to prevent a second temptation by the Devil and the fall of the planet’s new young inhabitants
1945 That Hideous Strength: A Modern Fairy-Tale for Grown-ups by C.S. Lewis– Ransom assembles a motley crew to combat the rise of an evil corporation which is seeking to overthrow mankind
1949 Nineteen Eighty-Four by George Orwell – after a nuclear war, inhabitants of ruined London are divided into the sheep-like ‘proles’ and members of the Party who are kept under unremitting surveillance

1971 Mutant 59: The Plastic Eater by Kit Pedler and Gerry Davis – a genetically engineered bacterium starts eating the world’s plastic

1980 Russian Hide and Seek by Kingsley Amis – in an England of the future which has been invaded and conquered by the Russians, a hopeless attempt to overthrow the occupiers is easily crushed
1981 – The Golden Age of Science Fiction edited by Kingsley Amis – 17 classic sci-fi stories from what Amis considers the Golden Era of the genre, namely the 1950s

James Cook – The Voyages @ the British Library

2018 marks 250 years since Captain James Cook set off from Plymouth on the first of his three epoch-making voyages of exploration to the Pacific. In 1768 most of the coastlines and islands scattered across this vast body of water – nearly 64 million square miles of ocean – were unknown to Europeans. When Cook’s third voyage returned to Britain in 1780, most of the blank spaces had been filled in as a result of his labours.

This exhibition is an excellently curated and imaginatively staged account of Cook’s big three voyages. It:

  1. sets them in the wider framework of European knowledge of the time
  2. shows how each one was received and assimilated by both the elite scientific community and the broader general public
  3. most significantly of all, goes to great lengths to present the other side of the story, the by and large disastrous consequences for the ‘native’ or ‘first peoples’ of Australia, New Zealand and across the Pacific islands not so much of Cook’s visits themselves, but of the consequences – the way these peoples found themselves quickly caught up in the worldwide web of European trade, exploited, marginalised, often decimated by disease and of how their descendants, even today, are fighting to make their voices heard and to re-establish the importance of their culture and their version of history.

Image result for james cook voyages

Voyage One 1768-71

Cook had gained a reputation as a hard working navigator and map-maker during the Seven Years War (1756-63) in Canada, when he had charted the St Laurence Waterway and then, when peace came, made the first detailed charts of the island of Newfoundland off the Canadian coast.

So when the Royal Society approached the Royal Navy for a captain to lead an expedition to the Pacific, to carry scientific equipment and astronomers there in order to observe the transit of Venus across the sun which was due to take place in June 1769, the Admiralty saw an excellent opportunity to combine science with exploration and Cook’s name came into the frame.

The Navy provided the ship, HMS Endeavour which Cook sailed on, and he was under Admiralty orders that, once the transit was observed, he should sail on to try and find the fabled southern land which geographers and explorers of the time were convinced ran along the bottom of the Pacific Ocean.

Cook took along with him Joseph Banks, a charming, privately wealthy botanist, with an extensive retinue of six artists and assistants, plus his servants and pet greyhounds. The huge collections of plants, birds, fish and other life forms which Banks made on the three year journey would later be sent to the new Royal Botanic Gardens at Kew, and to the Royal Society, for categorisation and study.

The first voyage crossed the Atlantic and touched at Tierra del Fuego on the southern tip of South America, before sailing into the Pacific and on to Tahiti. Here the astronomers got to know the native people, built a fort, and observed the transit of Venus – then the Endeavour sailed on to New Zealand. By sailing right round and charting the two islands in detail, Cook proved that New Zealand was not part of the fabled Great Southern continent.

Cook’s Chart of New Zealand © British Library Board

Cook’s Chart of New Zealand © British Library Board

In April 1770 Cook anchored on a spot which he named Botany Bay, on a long stretch of the eastern coastline of Australia. The north coast had been mapped by the Dutch but this eastern coast Cook claimed for Britain and named New South Wales. Detecting no human habitation he declared it terra nullius i.e. uninhabited – the start of 250 years of ignoring and marginalising Australia’s aboriginal people.

Cook’s ship was holed on the Great Barrier Reef, and after a very dicey few hours getting the ship afloat again, they found a sheltered cove in which to make extensive repairs. After completing the survey of east Australia, they sailed north-west to reach Batavia, capital of the Dutch East Indies, where a number of Cook’s crew were struck down by malaria and dysentery, and so across the Indian Ocean, around the Cape of Good Hope and home.

Banks sent the vast cornucopia of specimens, sketches and descriptions made by him and his retinue to the Royal Society and became what David Attenborough describes as ‘the Great Panjandrum’ of the late-18th century scientific world.

Voyage Two 1772-5

This time Cook was sent with explicit orders from the Admiralty to search for the Great Southern Continent. After a dispute about accommodation Banks didn’t, alas, go on this second trip.

In searching for the Southern Continent, and ultimately proving its non-existence, the expedition would cross the Antarctic Circle three times and, during the winter months, would make two long circuits of the south Pacific, charting a number of islands and island groups not before accurately plotted on European maps.

The voyages among towering icebergs in the southern seas gripped my imagination most, but Cook also made longish stays at Tahiti and Easter Island.

The Resolution and the Discovery in Prince William Sound, Alaska by John Webber © British Library

The Resolution and the Discovery in Prince William Sound, Alaska by John Webber © British Library

Voyage Three 1776-80

Cook was put in charge of the Resolution to be accompanied by the Discovery, captained by Charles Clerke. This time his mission from the Admiralty was to sail via Tahiti to the Pacific North-West coast of America in search of that other great chimera, the fabled ‘North-West Passage’ which sailors, for two centuries – had been hoping would allow ships to sail from the vast Hudson Bay in north Canada, clear through into the Pacific and so on to the Indies.

As no such passage exists, Cook never found it. Instead this voyage was as epic as the others, taking in stops at Queen Charlotte Sound in New Zealand, Tasmania, Tonga and Tahiti, places they had previously visited.

In January 1778, the expedition called at the Hawaiian islands, which were then unknown in Europe. After taking on supplies here, Cook sailed for the North Pacific coast of Canada. They arrived at the coast of modern Oregon and sailed north around the coast of Alaska looking in vain for some river or channel or outlet which would give access to the fabled short cut around North America.

They landed in the Aleutian Islands to take on water and then proceeded on through the Bering Strait in August 1778, still hoping to find access to a channel. Instead they ran up against a barrier of sheet ice and, following this east, discovered that it extended in an unbroken line from the west coast of North America all the way to the east coast of Asia. In August the expedition reached Russian soil. In other words – there was no way through.

Three Paddles from New Zealand by Sydney Parkinson, 1769 © British Library Board

Three Paddles from New Zealand by Sydney Parkinson, 1769 © British Library Board

The quest was over and Cook now needed to make winter quarters. Rather than stay up in Arctic waters, he decided to return to Hawai‘i. On 26 November 1778 the ships sighted Maui and on 16 January 1779 the ships arrived off Kealakekua Bay on the west coast of Hawai’i. They anchored and resumed friendly relations with the native people, led by King Kalani‘opu‘u, repairing the ship, taking on provisions and resting.

Finally, the ships sailed out of Kealakekua Bay on 4 February to resume their mission. But soon after their departure a storm blew up and the Resolution’s foremast was damaged, forcing them to return. King Kalani‘opu‘u had supervised elaborate farewell ceremonies for Cook and his men and now, according to diarist James Burney, ‘was very inquisitive, as were several of the Owhyhe Chiefs, to know the reason of our return and appeared much dissatisfied with it’.

Overnight on 14 February 1779, the large boat from the Discovery disappeared. As he had done in other places, Cook went on shore with the marines to take a senior figure hostage in order to demand its return. Charles Clerke later recorded that, on finding Kalani‘opu‘u having just woken up, Cook believed him to be ‘quite innocent of what happen’d and proposed to the old Gentleman to go onboard with him, which he readily agree’d to’. As the party returned to the beach, where two or three thousand people had assembled, tensions increased. News may have reached the crowd of the death of a man shot by British sailors who were blockading the harbour. Violence broke out and Cook was killed on the beach alongside four of the marines. Sixteen Hawaiians are believed to have been killed.

Both sides quickly regretted the misunderstanding and violence, but it was too late and – as commentators ever since have pointed out – it was indeed a symbol, a sign, a prophecy, of more misunderstanding and violence to come…

The exhibition

To my mind the British Library sometimes struggles to compete with the other major galleries or the British Museum for the simple reason that whereas the galleries have great works of art and the Museum has fabulous artefacts, for the most part the Library, by definition, is restricted to books and other printed matter, extending to pamphlets, prints, maps and so on, but none of them necessarily that visually impressive.

But the curators have gone to great lengths to overcome this potential drawback and to bring together the widest possible range of sources.

Books Thus, as you’d expect, there are a number of original journals and diaries, of Cook himself, as well as of important colleagues such as Banks and several of the other naturalists, surgeons and scientists who accompanied him.

Maps If you like maps, you’ll love this show. There are European maps from before Cooks’ voyages, maps generated by predecessors like Tasman, and his French contemporary de Bougainville, and then the maps which Cook himself generated.

Cook’s charts It was fascinating to see the very actual maps that Cook himself drew and created. At the end of the day, this was what all this extraordinary effort was about – the charts which were brought back to be used by the Royal Navy and by commercial sailings. These were the core of the project and it is great to have the opportunity to study in real detail the results of Cook’s handiwork, to read the wall labels and have explained to you why there were gaps here or there (for example, a stretch of the Australian coast wasn’t charted in detail because Cook couldn’t penetrate through the Great Barrier Reef to observe it closely), and even his errors. He mistook a peninsula on the South Island of New Zealand for an island, and an island off the North Island for a peninsula. Nobody’s perfect.

Objects But to supplement these obvious selections, the curators have also brought in some interesting objects such as one of the telescopes which was used to observe the transit of Venus and an example of the new timepieces which helped navigators work out longitude and thus establish their position.

Copies of Harrison's chronometer made by John Arnold © Royal Society

Copies of Harrison’s chronometer made by John Arnold © Royal Society

Oil paintings There’s also a handful of big contemporary oil paintings – of Cook himself and Joseph Banks and of the famous Tahiti Islander, Mai, who Cook brought back to Britain and who made a great splash in London society, being painted by William Parry and Joshua Reynolds among others, as well as having books and poems dedicated to him.

Botanical and scenic sketches Banks was a man obsessed with gathering absolutely every specimen of flora and fauna he could get his hands on throughout the entire three-year voyage. Spurred on by his work ethic, the naturalists and artists he had brought with him generated a wealth of sketches and drawings (including the earliest European depiction of a kangaroo!).

The exhibition sets the sketches alongside the finished oil paintings which were later worked up from them, either by the original artist or by a commercial artist back in London. Often the original sketches were ‘improved’ or ‘finished’ for inclusion in one of the many books which were published about the voyages to capitalise on their popularity, and the exhibition quietly points out how the rough and accurate sketches became noticeably westernised i.e. the landscapes became more soft and ‘sublime’ as per contemporary taste, and the sketches of the native people’s sometimes very rough shelters were transformed into noble dwellings, sometimes complete with ancient Greek columns, again to fit in with prevailing Western tastes for the idea of ‘the Noble Savage’.

One of the highlights is the striking drawings of natives and plants by Sydney Parkinson (who made nearly a thousand drawings of the plants and animals collected by Banks and Daniel Solander on the first voyage). There are evocative drawings of native people decorated by elaborate tattoos by William Hodges, beautiful flowers painted by Georg Foster who went on the second voyage, and so on.

Native objects In stark contrast to all these visual images created from within the western artistic tradition, the exhibition also includes a number of original artefacts by the natives, or aboriginals, or first peoples of the many places Cook visited.

These include, for example, a wooden cuirass or piece of armour from Prince William Sound, a bow and arrow, and a flute and drum, and a beautiful Nootka rattle carved in the shape of two birds.

Rattle from Nootka Sound, c. 1778 © Museum of Archaeology and Anthropology, University of Cambridge

Rattle from Nootka Sound, c. 1778 © Museum of Archaeology and Anthropology, University of Cambridge

To quote the press release, exhibition highlights include:

  • Paintings depicting Tahiti, New Zealand and Australia by the Polynesian high priest and navigator Tupaia, which are on display as a group for the first time
  • The first chart of New Zealand by James Cook
  • The first artworks depicting the Antarctic by William Hodges on loan from the State Library of New South Wales, reunited with James Cook’s handwritten journal entry describing the first crossing of the Antarctic Circle, for the first time in 100 years
  • Specimens from the first voyage, including the mouth parts of a squid, on loan from the Royal College of Surgeons
  • Expedition artist John Webber’s watercolour landscapes, including the first European illustrations of Hawai’i
  • Jewellery and musical instruments, including a necklace from Tierra del Fuego, ceremonial rattle from Nootka Sound (Vancouver Island) and bamboo flute from Tahiti, on loan from Museum of Archaeology and Anthropology, Cambridge
  • Natural history drawings, including the first European depiction of a kangaroo by Sydney Parkinson on loan from the Natural History Museum

Quite an assembly, going far beyond books and maps – and from a strikingly wide variety of sources.

Staging In terms of staging and presentation, the curators have gone to a lot of trouble to create a marine atmosphere, by painting the walls with sea-inspired colours. The exhibition is in the form of a kind of maze of differently shaped rooms, some painted light blue to display the voyage material, and deliberately contrasted with ‘brown’ rooms, lit by replica 18th century oil lamps to represent the time spent back in London. In these rooms are displayed the paintings, prints and publications of all sorts which the voyages inspired.

It’s interesting to note the number of literary works, with quite a few epic poems, dramas and satires based on the sea voyages or on the character of the new peoples Cook had ‘discovered’, particularly the peoples of Tahiti and Hawai’i.

It’s also notable that a number of these works were openly critical of Cook, of the occasional violence with natives which – despite Cook’s best efforts – broke out, and accurately predict the likely dire consequences for people suddenly thrown into the ‘modern’ world economy with absolutely no preparation or help.

Videos And there are no fewer than eight shortish (three minutes) videos, specially commissioned for the exhibition and dotted throughout the show, which feature not only maps and charts and the art work listed above, but modern day shots of many of the key (and generally quite stunning) locations, plus a range of interviewees explaining what actually happened on each voyage, and their importance.

Among the European interviewees are David Attenborough who enthusiastically describes Cook as probably the greatest maritime explorer of all time, and Australian anthropologist Nicholas Thomas, whose book about Cook is on sale in the well-stocked exhibition shop.

The controversy

And this brings us to what is maybe the dominant thread running through this exhibition. As Thomas says in one of the films, the past 30-40 years have seen a revolution in attitudes towards Cook and white colonial rule generally.

As recently as the 1970s there is footage of the Queen and Princess Anne sitting on a beach in Australia watching a re-enactment of Cook’s landing with his crew, and making his notorious claim that, the land being ’empty’, he claimed it for the British Crown.

Well, attitudes among educated people throughout the Western world have been completely changed since then and now there is widespread acknowledgement of the possible illegality of those claims, and the definitely devastating impact of white colonial contact with native peoples.

From Australia, New Zealand, Tasmania, across the scores of small islands of Polynesia and up into the Arctic Circle among the Inuit Indians, the impact of white explorers on native ‘first’ peoples was almost always catastrophic.

‘Inhabitants of the Island of Terra del Fuego in their Hut’ by Alexander Buchan, 1769 © British Library Board

‘Inhabitants of the Island of Terra del Fuego in their Hut’ by Alexander Buchan, 1769 © British Library Board

As the films make clear, it is only in recent decades that the presence of the native peoples has been fully acknowledged, and the voices and experiences of the first peoples of Cook’s time, and of their contemporary descendants, fully heard.

Thus the eight short videos had contributions from a number of qualified white people – from David Attenborough, Nigel Thomas, Australian historian Dame Anne Salmond, from a male author and a woman biologist. But there were at least as many if not more ‘native’ voices heard – descendants of the Australian Aborigines and a number of the Pacific islanders / Polynesians where Cook stopped. I’d like to name them all, but the captions giving their names and titles only appeared very briefly, and there was – well – a lot to see and take in.

What came over in the words of all the native peoples – aborigine, Maori, Tahitian, Hawaiian – was the hurt.

After all these years – after 250 years – their descendants are still very upset about the way that:

  • their lands were taken from them
  • their heritage, their culture, their languages and customs and religions, were ignored, submerged, obliterated
  • their populations were decimated by the many terrible diseases the white men brought (smallpox, syphilis)

Entire peoples found themselves consigned to being second class citizens or not even that – invisible, non-people, with no political or legal rights, no voice, no say.

It is impossible to deny that this was the impact of Cook’s voyages. Without doubt the voyages were themselves heroic endeavours and respect to the men who carried them out. And there is plenty of evidence that Cook himself was a just and fair man, who made efforts to have natives treated fairly, who personally respected the rites and cultures which he encountered, and who rigorously punished any members of the crew found mistreating or exploiting natives.

But even Cook himself was uneasily aware that the technologically backward peoples he was discovering would struggle to survive in the face of Western technology, ships, guns, and trade.

Tupaia Nothing can really make amends for the wrongs which were done to native peoples across the Pacific in the aftermath of Cook’s explorations. The dignity with which the curators treat their often tragic histories is a start. Hearing from their descendants in the eight videos also ensures that the voices of the first peoples will always now be part of the Cook story.

But the exhibition also sheds new light on some specific and named natives. I’ve mentioned Omai – real name Mai – who was befriended and persuaded to travel all the way back to Britain.

Omai by William Hodges © Royal Museums Greenwich

Omai by William Hodges © Royal Museums Greenwich

We also hear about named kings and high priests who Cook and his officers treated fully as equals, giving them gifts, attending their religious ceremonies.

But the exhibition also brings out how vital many natives were to Cook’s success. It was, after all, only with the help and co-operation of the various local peoples that Cook was able to anchor, land, make repairs to the ship, to access vital fresh water and, above all, food.

And communicate. Another Tahitian, Hitihiti, travelled with Cook on to a number of Pacific islands, notably Easter Island, where he was invaluable as acting as an interpreter to first peoples.

Another very notable figure is the Polynesian high priest and navigator Tupaia. He accompanied Cook to New Zealand and Australia and is referenced by many of the aboriginal interviewees in the films as a kind of role model for the power he had and the respect he commanded from the white man.

And now it appears, from evidence in a recently discovered letter of Joseph Banks, that many of the sketches included in the archive of the first voyage were drawn by Tupaia himself, not by British artists. They are shown here for the first time with their proper credit and this knowledge gives them a whole new mystique and poignancy.

Banks and a Maori by Tupaia © British Library Board

Banks and a Maori by Tupaia © British Library Board

Summary

The voyages of James Cook were a great human achievement, displaying stunning bravery, discipline, determination, scientific and artistic expertise. The long-lasting impact on native peoples all over the vast Pacific region was almost always disastrous.

The exhibition makes a very good effort to capture the complexity of the resulting situation – amazement at a great achievement from the Age of Discovery. Difficult, moving and upsetting testimonials to the sorry centuries which followed.

The video


Related links

  • James Cook – The Voyages continues at the British Library until 28 August
  • The British Library microsite contains links off to quite a few good articles about each of the voyages, the natural history, indigenous peoples, the north-west passage, imperial legacy and much more

The Perfect Theory by Pedro G. Ferreira (2014)

On page three of this book, astrophysicist Pedro G. Ferreira explains that part of what enthralled him as a student studying the theory of relativity was the personalities and people behind the ideas.

I felt that I had entered a completely new universe of ideas populated by the most fascinating characters. (p.xiii)

This is the approach he takes in the 14 chapters and 250 pages of this book which skip lightly over the technicalities of the theory in order to give us an account of the drama behind the discovery of the theory. Ferreira describes relativity’s slow acceptance and spread among the community of theoretical physicists, many of whom went on to unravel unexpected consequences from his equations which Einstein hadn’t anticipated (and often fiercely opposed). He shows how the theory was eclipsed in the middle years of the century by the more fashionable theory of quantum physics, then underwent a resurgence from the 1960s onwards, until Ferreira brings the story right up to date with predictions that we are trembling on the brink of major new, relativity-inspired, discoveries.

This book isn’t about the theory of relativity so much as the story of how it was devised, received, tested, studied and expanded, and by whom. It is ‘the biography of general relativity’ (p.xv).

Thus the narrative eschews maths and scientific formulae to focus on a narrative with plenty of human colour and characters. For example, early explanations of the theory are dovetailed with accounts of Einstein’s opposition to the Great War and the political attitudes of Sir Arthur Eddington, his chief promoter in Britain, who was a Quaker. A typically vivid and grabby opening sentence of a new section reads:

While Einstein was working on his theory of general relativity, Alexander Friedmann was bombing Austria. (p.31)

Some reviews I’ve read say that – following Stephen Hawking’s example in his A Brief History of Time (1988) – there isn’t a single equation in the book, but that isn’t quite true; there’s one on page 72:

2 + 2 = 4

is the only equation in the book – which I suspect is a joke. For the most part the ideas are explained through the kind of fairly simple-to-describe thought experiments (Gedankenexperimenten) which led Einstein to his insights in the first place – simple except that they are taking place against an impossibly sophisticated background of astrophysical knowledge, maths theories, weird geometry and complex equations.

Timeline

In 1905 Albert Einstein wrote a number of short papers based on thought experiments he had been carrying out in his free time at his undemanding day job working in the Berne Patent Office. The key ones aimed to integrate Newtonian mechanics with James Clerk Maxwell’s force of electromagnetism. His breakthrough was ‘seeing’ that space and time are not fixed entities but can, under certain circumstances, bend and curve. (It is fascinating to learn that Einstein’s insights came through thought experiments, thinking through certain, fairly simple, scenarios and working through the consequences – only then trying to find the mathematical formulas which would express essentially mental concepts. Only years later was any of it subjected to experimental proof.)

The book gives a powerful sense of the rivalry and jostling between different specialisms. It’s interesting to learn that pure mathematicians often looked down on physicists; they thought physicists too ready to bodge together solutions, whereas mathematicians always strive for elegance and beauty in the equations. Physicists, for their part, suspect the mathematicians of coming up with evermore exotic and sometimes bizarre formulas, which bear little or no relation to the ‘reality’ which physicists have to work with.

So the short or ‘special’ theory of relativity – focusing on mechanics and electromagnetism – was complete by around 1907. But Einstein was acutely aware that it didn’t integrate gravity into his model of the universe. It would take Einstein another ten years to integrate gravity into his theory which, as a result, is known as the general theory of relativity.

Ferreira explains how he was helped by his friend, the mathematician Marcel Grossman, who introduced him to the realm of non-Euclidean mathematics devised by Bernhard Riemann. This is typical of how the book proceeds: by showing us the importance of personal contacts, exchanges, dialogue between scientists in different specialities.

For example, Ferreira explains that the ‘Hilbert program’ was the attempt by David Hilbert to give an unshakable theoretical foundation to all mathematics. Einstein visited Hilbert at the university of Göttingen in 1915, because his general theory still lacked complete mathematical provenance. He had intuited a way to integrate gravity into his special theory – but didn’t have the maths to prove it. Eventually, by the end of 1915, in a process Ferreira describes as Einstein dropping some of his ‘intuitions’ in order to ‘follow the maths’, Einstein completed his general theory of relativity, expressed as a set of equations which became known as the ‘Einstein field equations’.

In fact the field equations were ‘a mess’. A set of ten equations of ten functions of the geometry of space and time, all nonlinearly tangled and intertwined, so that solving any one function by itself was impossible. The theory argued that what we perceive as gravity is nothing more than objects moving in the geometry of spacetime. Massive objects affect the geometry, curving space and time.

Almost before he had published the theory (in an elegantly compact three-page paper) other physicists, mathematicians, astronomers and scientists had begun to take the equations and work through their implications, sometimes with results which Einstein himself strongly disapproved of. One of the most interesting themes in the book is the way that Einstein himself resisted the implications of his own theory.

For example, Einstein assumed, on the classical model, that matter was spread evenly through the universe; but mathematicians pointed out that, if so, Einstein’s equations suggested that at some point the universe would start to evolve i.e. large clumps of matter would be attracted to each other; nothing would stay still; potentially, the entire universe could end up collapsing in on itself. Einstein bent over backwards to exclude this ‘evolving universe’ scenario from his theory by introducing a ‘cosmological constant’ into it, a notional force which pushed back against gravity’s tendency to collapse everything: between the attraction of gravity and the repellent force of the ‘cosmological constant’, the universe is held in stasis. Or so he claimed.

Ferreira explains how the Dutch astronomer Willem de Sitter was sympathetic to Einstein’s (gratuitous) cosmological constant and worked through the equations, initially to support Einstein’s theory, but in so doing discovered that the universe could be supported by the constant alone – but it would contain very little matter, very little of the stars and planets which we seem to see. Einstein admired the maths but abhorred the resulting picture of a relatively empty universe.

In fact this was just the beginning of Einstein’s theory running away from him. The Russian astronomer and mathematician Alexander Friedmann worked through the field equations to prove that the perfectly static universe Einstein wanted to preserve – and had introduced his ‘cosmological constant’ to save – was in fact only one out of many possible scenarios suggested by the field equations – in all the others, the universe had to evolve.

Friedmann explained his findings in his 1922 paper, ‘On the Curvature of Space’, which effectively did away with the need for a cosmological constant. His work and that of the Belgian priest, Georges Lemaître, working separately, strongly suggested that the universe was in fact evolving and changing. They provided the theoretical underpinning for what astronomers had observed and named the ‘de Sitter effect’, namely the observation, made with growing frequency in the 1920s, that the furthest stars and nebulae from earth were undergoing the deepest ‘red shift’ i.e. the light emanating from them was shifted down the spectrum towards red, because they were moving away from us. Even though Einstein himself disapproved of the idea, his theory and the observations it inspired both showed us that the universe is expanding.

If so – does that mean that the universe must have had a definite beginning? When? How? And could the theory shed light on what were just beginning to be known as ‘dwarf stars’? What about the bizarre new concept of ‘black holes’ (originally developed by the German astronomer Karl Schwarzchild, who sent his results to Einstein in 1916, but died later that year)?

What Einstein called ‘the relativity circus’ was well underway – and the rest of the book continues to introduce us to the leading figures of 20th century physics, astrophysics, cosmology and mathematics, giving pen portraits of their personalities and motivations and describing the meetings, discussions, conferences, seminars, experiments, arguments and debates in which the full implications of Einstein’s theory were worked out, argued over, rejected, revived and generally played with for the past 100 years.

We are introduced:

  • To Subrahmanyan Chandrasekhar who proposed a sophisticated solution to the problem of white dwarfs and how stars die – which was rejected out of hand by Eddington and Einstein.
  • To the Soviet physicist Lev Davidovich Landau who proposed that stars shine and burn as a result of the radioactive fission of tremendously dense neutrons at their core (before he was arrested for anti-Stalin activities in 1938).
  • To J. Robert Oppenheimer who read Landau’s paper and used its insights to prove Schwarzchild’s wartime idea that stars collapse into such a dense mass that gravity itself cannot escape, and therefore a bizarre barrier is created around the star from which light, energy, radiation or gravity can emerge – the ‘event horizon’ of a ‘black hole’.

These are the main lines of research and investigation which Ferreira outlines in the first quarter or so of the book up to the start of World War Two. At this point, of course, many leading physicists and mathematicians of all nationalities were roped into the massive research projects run in America and Germany into designing a bomb which could harness the energy of nuclear fusion. This had been thoroughly investigated in theory and in observations of distant galactic phenomena – but never created on earth. Not until August 1945, that is, when the two atom bombs dropped on Japan killed about 200,000 people.

Learnings

Some of the several fascinating things to learn from this mesmerising account are:

  • How often Einstein was wrong and wrong-headed, obstinately refusing to believe the universe evolved and changed, refusing to believe (therefore) that it had an origin in some ‘big bang’, and his refusal to accept the calculations which proved the possibility of black holes.
  • That although a great genius may devise a profound theory, in the world of science he doesn’t ‘own’ it – there is literally no limit to the number of other scientists who can probe and poke and work through and analyse and falsify it – and that the strangeness and weirdness of general relativity made it more liable than most theories to produce unexpected and counter-intuitive results, in the hands of its many epigones.
  • That after early successes, namely:
    • predicting the movement of the planets more accurately than Newton’s classical mechanical theory
    • showing that light really is bent by gravity when this phenomenon was observed and measured during a solar eclipse in 1919
    • inspiring the discovery that the universe is expanding
  • the theory of relativity was increasingly thought of as a generator of bizarre mathematical exotica which had little or no relevance to the real world. We learn that ambitious physicists from the 1930s onwards preferred to choose careers in the other great theoretical breakthrough of the 20th century, quantum physics. Quantum could be tested, experimented with and promised many more practical breakthroughs.

Almost everyone’s attention was elsewhere now, enthralled by the triumph of quantum physics. Most of the talented young physicists were focusing their efforts on pushing the quantum theory further, looking for more spectacular discoveries and applications. Einstein’s general theory of relativity, with all its odd predictions and exotic results, had been elbowed out of the way and sentenced to a trek in the wilderness. (p.65)

  • And so that Einstein, now safely ensconced in the rarefied atmosphere of the Institute for Advanced Studies in Princeton, New Jersey, dedicated the last thirty years of his life (he died in 1955) to an ultimately fruitless quest for a ‘Grand Unified Theory’ which would combine all aspects of physics into one set of equations. He was, in the 1940s and 50s, an increasingly marginal figure – yesterday’s man – while the world hurried on without him. He died before the great revival of his theory in the 1960s which the second part of Ferreira’s book chronicles.

Visualisation

Again and again Ferreira shows how the researchers proceeded – or summarises the differences between their approaches and results – in terms of how they visualised the problem. Thus Schwarzchild’s vision of a relativistic universe described a spacetime that was perfectly symmetric about one point; whereas 40 years later, in 1963, New Zealander Roy Kerr modeled a solution for a spacetime that was symmetric about a line (p.121). A different way of visualising and conceiving the problem, which led to a completely different set of equations, and completely different consequences.

Other scientists take an insight like this, a new vision with accompanying new mathematics, and themselves subject it to further experimental modeling. The Soviet physicists Isaak Khalatnikov and Evgeny Lifshitz took Oppenheimer and Snyder’s 1930s model of a star collapsing – which assumed the shape of the star to be a perfect sphere – and modeled what happened if the star-matter was rough and unequal, like the surface of the earth. In this model, different bits collapsed at different rates, creating a churning of space time and never achieving the perfect collapse into a singularity modeled by Schwarzchild 60 years earlier or by Kerr more recently. This Soviet model was itself disproved by Roger Penrose, who had spent years devising his own diagrams and maths to model spacetime, and submitted a paper in 1965 which proved that ‘the issue of the final state’ always ended in singularities (pp.123-125).

And that is how the field progresses, via new ways of seeing and modeling. One revealing anecdote is how, at a conference in the 1990s on the newly hot topic of ‘dark matter’, one presenter put up a slide listing over one hundred different models for how dark matter exists, is created and works (p.192), all theoretical, derived from different sets of equations or observations, all awaiting proof.

It is not only the complexity of the subject matter which makes this such a daunting field of knowledge – it is the sheer number and variety of theories, ancient and modern, which its practitioners are called on to understand and sift and evaluate and which – as the first half makes plain – even the giants in the field, Einstein and Eddington, could get completely wrong.

The 1960s and since

In Ferreira’s account the 1960s saw a great revival of the theory of general relativity to explain the host of new astronomical phenomena which were being discovered and named – joining black holes and dwarf stars were pulsars, quasars and so on – as well as new theoretical micro-particles, like the Higgs boson. Kip Thorne called the 60s and 70s the Golden Age of Relativity, when the theory provided elegant solutions to problems about black holes, dark energy and dark matter, singularities and the Big Bang.

Over the past forty years or so new theories have arisen which take and transcend general relativity, including string theory (which rose to prominence in the 1980s but has since fallen into unpopularity) and supersymmetry (which invokes up to six extra dimensions in its quest for a total theory), loop quantum theory (where reality is comprised of minute loops of quantum gravity which bind together like chainmail), spin networks (frameworks like a children’s climbing frame, devised by Roger Penrose), Modified Newtonian Dynamics (or MOND) or a new theory to rival Einstein’s named the Tensor-Vector-Scalar theory of gravity (TeVeS).

When Ferreira and colleagues undertook a review of theories of quantum mechanics they discovered there are scores of them, ‘a rich bestiary of gravitational theories’ (p.221).

The great ambition is to incorporate quantum gravity into general relativity in order to produce a grand unified theory of everything. Although clever people bet this would happen before the end of the 20th century, it didn’t. 17 years later, we seem as far away as ever.

Thirty years after Stephen Hawking predicted the end of physics and then unleashed his black hole information paradox on an unsuspecting world, there isn’t an agreed-upon theory of quantum gravity, let alone a complete unified theory of all the fundamental forces. (p.205)

Ferreira draws together various developments in theory at the sub-atomic level to conclude that we may be on the brink of moving beyond Einstein’s vision of a curving spacetime: the real stuff of the universe is, depending on various theories, a bubbling foam of intertwining strings or structures or membranes or loops – but certainly not continuous. Newtonian mechanics still work fine at the gross level of our senses; it is only at extremes that Einstein’s theories need to be evoked. Now Ferreira wonders if it’s time to do the same to Einstein’s theories; to go beyond them at the new extremes of physical reality which are being discovered.

Notes

The deliberate non-technicality of the text is compensated by 18 pages of excellent notes, which give a chatty overview of each of the chapter topics before recommending up-to-the-minute websites for further reading, including the websites and even Facebook groups for specific projects and experiments. And there is also a detailed bibliography of books and articles.

All in all this is an immensely useful overview of the ideas and debates in this field.


Related links

%d bloggers like this: