The Book of Universes by John D. Barrow (2011)

This book is twice as long and half as good as Barrow’s earlier primer, The Origin of the Universe.

In that short book Barrow focused on the key ideas of modern cosmology – introducing them to us in ascending order of complexity, and as simply as possible. He managed to make mind-boggling ideas and demanding physics very accessible.

This book – although it presumably has the merit of being more up to date (published in 2011 as against 1994) – is an expansion of the earlier one, an attempt to be much more comprehensive, but which, in the process, tends to make the whole subject more confusing.

The basic premise of both books is that, since Einstein’s theory of relativity was developed in the 1910s, cosmologists and astronomers and astrophysicists have:

  1. shown that the mathematical formulae in which Einstein’s theories are described need not be restricted to the universe as it has traditionally been conceived; in fact they can apply just as effectively to a wide variety of theoretical universes – and the professionals have, for the past hundred years, developed a bewildering array of possible universes to test Einstein’s insights to the limit
  2. made a series of discoveries about our actual universe, the most important of which is that a) it is expanding b) it probably originated in a big bang about 14 billion years ago, and c) in the first few milliseconds after the bang it probably underwent a period of super-accelerated expansion known as the ‘inflation’ which may, or may not, have introduced all kinds of irregularities into ‘our’ universe, and may even have created a multitude of other universes, of which ours is just one

If you combine a hundred years of theorising with a hundred years of observations, you come up with thousands of theories and models.

In The Origin of the Universe Barrow stuck to the core story, explaining just as much of each theory as is necessary to help the reader – if not understand – then at least grasp their significance. I can write the paragraphs above because of the clarity with which The Origin of the Universe explained it.

In The Book of Universes, on the other hand, Barrow’s aim is much more comprehensive and digressive. He is setting out to list and describe every single model and theory of the universe which has been created in the past century.

He introduces the description of each model with a thumbnail sketch of its inventor. This ought to help, but it doesn’t because the inventors generally turn out to be polymaths who also made major contributions to all kinds of other areas of science. Being told a list of Paul Dirac’s other major contributions to 20th century science is not a good way for preparing your mind to then try and understand his one intervention on universe-modelling (which turned, in any case, out to be impractical and lead nowhere).

Another drawback of the ‘comprehensive’ approach is that a lot of these models have been rejected or barely saw the light of day before being disproved or – more complicatedly – were initially disproved but contained aspects or insights which turned out to be useful forty years later, and were subsequently recycled into revised models. It gets a bit challenging to try and hold all this in your mind.

In The Origin of the Universe Barrow sticks to what you could call the canonical line of models, each of which represented the central line of speculation, even if some ended up being disproved (like Hoyle and Gold and Bondi’s model of the steady state universe). Given that all of this material is pretty mind-bending, and some of it can only be described in advanced mathematical formulae, less is definitely more. I found The Book of Universes simply had too many universes, explained too quickly, and lost amid a lot of biographical bumpf summarising people’s careers or who knew who or contributed to who’s theory. Too much information.

One last drawback of the comprehensive approach is that quite important points – which are given space to breathe and sink in in The Origin of the Universe are lost in the flood of facts in The Book of Universes.

I’m particularly thinking of Einstein’s notion of the cosmological constant which was not strictly necessary to his formulations of relativity, but which Einstein invented and put into them solely in order to counteract the force of gravity and ensure his equations reflected the commonly held view that the universe was in a permanent steady state.

This was a mistake and Einstein is often quoted as admitting it was the biggest mistake of his career. In 1965 scientists discovered the cosmic background radiation which proved that the universe began in an inconceivably intense explosion, that the universe was therefore expanding and that the explosive, outward-propelling force of this bang was enough to counteract the contracting force of the gravity of all the matter in the universe without any need for a hypothetical cosmological constant.

I understand this (if I do) because in The Origin of the Universe it is given prominence and carefully explained. By contrast, in The Book of Universes it was almost lost in the flood of information and it was only because I’d read the earlier book that I grasped its importance.

The Book of Universes

Barrow gives a brisk recap of cosmology from the Sumerians and Egyptians, through the ancient Greeks’ establishment of the system named after Ptolemy in which the earth is the centre of the solar system, on through the revisions of Copernicus and Galileo which placed the sun firmly at the centre of the solar system, on to the three laws of Isaac Newton which showed how the forces which govern the solar system (and more distant bodies) operate.

There is then a passage on the models of the universe generated by the growing understanding of heat and energy acquired by Victorian physicists, which led to one of the most powerful models of the universe, the ‘heat death’ model popularised by Lord Kelvin in the 1850s, in which, in the far future, the universe evolves to a state of complete homegeneity, where no region is hotter than any other and therefore there is no thermodynamic activity, no life, just a low buzzing noise everywhere.

But this is all happens in the first 50 pages and is just preliminary throat-clearing before Barrow gets to the weird and wonderful worlds envisioned by modern cosmology i.e. from Einstein onwards.

In some of these models the universe expands indefinitely, in others it will reach a peak expansion before contracting back towards a Big Crunch. Some models envision a static universe, in others it rotates like a top, while other models are totally chaotic without any rules or order.

Some universes are smooth and regular, others characterised by clumps and lumps. Some are shaken by cosmic tides, some oscillate. Some allow time travel into the past, while others threaten to allow an infinite number of things to happen in a finite period. Some end with another big bang, some don’t end at all. And in only a few of them do the conditions arise for intelligent life to evolve.

The Book of Universes then goes on, in 12 chapters, to discuss – by my count – getting on for a hundred types or models of hypothetical universes, as conceived and worked out by mathematicians, physicists, astrophysicists and cosmologists from Einstein’s time right up to the date of publication, 2011.

A list of names

Barrow namechecks and briefly explains the models of the universe developed by the following (I am undertaking this exercise partly to remind myself of everyone mentioned, partly to indicate to you the overwhelming number of names and ideas the reader is bombarded with):

  • Aristotle
  • Ptolemy
  • Copernicus
  • Giovanni Riccioli
  • Tycho Brahe
  • Isaac Newton
  • Thomas Wright (1771-86)
  • Immanuel Kant (1724-1804)
  • Pierre Laplace (1749-1827) devised what became the standard Victorian model of the universe
  • Alfred Russel Wallace (1823-1913) discussed the physical conditions of a universe necessary for life to evolve in it
  • Lord Kelvin (1824-1907) material falls into the central region of the universe and coalesce with other stars to maintain power output over immense periods
  • Rudolf Clausius (1822-88) coined the word ‘entropy’ in 1865 to describe the inevitable progress from ordered to disordered states
  • William Jevons (1835-82) believed the second law of thermodynamics implies that universe must have had a beginning
  • Pierre Duhem (1961-1916) Catholic physicist accepted the notion of entropy but denied that it implied the universe ever had a beginning
  • Samuel Tolver Preson (1844-1917) English engineer and physicist, suggested the universe is so vast that different ‘patches’ might experience different rates of entropy
  • Ludwig Boltzmann and Ernst Zermelo suggested the universe is infinite and is already in a state of thermal equilibrium, but just with random fluctuations away from uniformity, and our galaxy is one of those fluctuations
  • Albert Einstein (1879-1955) his discoveries were based on insights, not maths: thus he saw the problem with Newtonian physics is that it privileges an objective outside observer of all the events in the universe; one of Einstein’s insights was to abolish the idea of a privileged point of view and emphasise that everyone is involved in the universe’s dynamic interactions; thus gravity does not pass through a clear, fixed thing called space; gravity bends space.

The American physicist John Wheeler once encapsulated Einstein’s theory in two sentences:

Matter tells space how to curve. Space tells matter how to move. (quoted on page 52)

  • Marcel Grossmann provided the mathematical underpinning for Einstein’s insights
  • Willem de Sitter (1872-1934) inventor of, among other things, the de Sitter effect which represents the effect of the curvature of spacetime, as predicted by general relativity, on a vector carried along with an orbiting body – de Sitter’s universe gets bigger and bigger for ever but never had a zero point; but then de Sitter’s model contains no matter
  • Vesto Slipher (1875-1969) astronomer who discovered the red shifting of distant galaxies in 1912, the first ever empirical evidence for the expansion of the galaxy
  • Alexander Friedmann (1888-1925) Russian mathematician who produced purely mathematical solutions to Einstein’s equation, devising models where the universe started out of nothing and expanded a) fast enough to escape the gravity exerted by its own contents and so will expand forever or b) will eventually succumb to the gravity of its own contents, stop expanding and contract back towards a big crunch. He also speculated that this process (expansion and contraction) could happen an infinite number of times, creating a cyclic series of bangs, expansions and contractions, then another bang etc
A graphic of the oscillating or cyclic universe (from Discovery magazine)

A graphic of the oscillating or cyclic universe (from Discovery magazine)

  • Arthur Eddington (1882-1944) most distinguished astrophysicist of the 1920s
  • George Lemaître (1894-1966) first to combine an expanding universe interpretation of Einstein’s equations with the latest data about redshifting, and show that the universe of Einstein’s equations would be very sensitive to small changes – his model is close to Eddington’s so that it is often called the Eddington-Lemaître universe: it is expanding, curved and finite but doesn’t have a beginning
  • Edwin Hubble (1889-1953) provided solid evidence of the redshifting (moving away) of distant galaxies, a main plank in the whole theory of a big bang, inventor of Hubble’s Law:
    • Objects observed in deep space – extragalactic space, 10 megaparsecs (Mpc) or more – are found to have a redshift, interpreted as a relative velocity away from Earth
    • This Doppler shift-measured velocity of various galaxies receding from the Earth is approximately proportional to their distance from the Earth for galaxies up to a few hundred megaparsecs away
  • Richard Tolman (1881-1948) took Friedmann’s idea of an oscillating universe and showed that the increased entropy of each universe would accumulate, meaning that each successive ‘bounce’ would get bigger; he also investigated what ‘lumpy’ universes would look like where matter is not evenly spaced but clumped: some parts of the universe might reach a maximum and start contracting while others wouldn’t; some parts might have had a big bang origin, others might not have
  • Arthur Milne (1896-1950) showed that the tension between the outward exploding force posited by Einstein’s cosmological constant and the gravitational contraction could actually be described using just Newtonian mathematics: ‘Milne’s universe is the simplest possible universe with the assumption that the universe s uniform in space and isotropic’, a ‘rational’ and consistent geometry of space – Milne labelled the assumption of Einsteinian physics that the universe is the same in all places the Cosmological Principle
  • Edmund Fournier d’Albe (1868-1933) posited that the universe has a hierarchical structure from atoms to the solar system and beyond
  • Carl Charlier (1862-1934) introduced a mathematical description of a never-ending hierarchy of clusters
  • Karl Schwarzschild (1873-1916) suggested  that the geometry of the universe is not flat as Euclid had taught, but might be curved as in the non-Euclidean geometries developed by mathematicians Riemann, Gauss, Bolyai and Lobachevski in the early 19th century
  • Franz Selety (1893-1933) devised a model for an infinitely large hierarchical universe which contained an infinite mass of clustered stars filling the whole of space, yet with a zero average density and no special centre
  • Edward Kasner (1878-1955) a mathematician interested solely in finding mathematical solutions to Einstein’s equations, Kasner came up with a new idea, that the universe might expand at different rates in different directions, in some parts it might shrink, changing shape to look like a vast pancake
  • Paul Dirac (1902-84) developed a Large Number Hypothesis that the really large numbers which are taken as constants in Einstein’s and other astrophysics equations are linked at a deep undiscovered level, among other things abandoning the idea that gravity is a constant: soon disproved
  • Pascual Jordan (1902-80) suggested a slight variation of Einstein’s theory which accounted for a varying constant of gravitation as through it were a new source of energy and gravitation
  • Robert Dicke (1916-97) developed an alternative theory of gravitation
  • Nathan Rosen (1909-995) young assistant to Einstein in America with whom he authored a paper in 1936 describing a universe which expands but has the symmetry of a cylinder, a theory which predicted the universe would be washed over by gravitational waves
  • Ernst Straus (1922-83) another young assistant to Einstein with whom he developed a new model, an expanding universe like those of Friedman and Lemaître but which had spherical holes removed like the bubbles in an Aero, each hole with a mass at its centre equal to the matter which had been excavated to create the hole
  • Eugene Lifschitz (1915-85) in 1946 showed that very small differences in the uniformity of matter in the early universe would tend to increase, an explanation of how the clumpy universe we live in evolved from an almost but not quite uniform distribution of matter – as we have come to understand that something like this did happen, Lifshitz’s calculations have come to be seen as a landmark
  • Kurt Gödel (1906-1978) posited a rotating universe which didn’t expand and, in theory, permitted time travel!
  • Hermann Bondi, Thomas Gold and Fred Hoyle collaborated on the steady state theory of a universe which is growing but remains essentially the same, fed by the creation of new matter out of nothing
  • George Gamow (1904-68)
  • Ralph Alpher and Robert Herman in 1948 showed that the ratio of the matter density of the universe to the cube of the temperature of any heat radiation present from its hot beginning is constant if the expansion is uniform and isotropic – they calculated the current radiation temperature should be 5 degrees Kelvin – ‘one of the most momentous predictions ever made in science’
  • Abraham Taub (1911-99) made a study of all the universes that are the same everywhere in space but can expand at different rates in different directions
  • Charles Misner (b.1932) suggested ‘chaotic cosmology’ i.e. that no matter how chaotic the starting conditions, Einstein’s equations prove that any universe will inevitably become homogenous and isotropic – disproved by the smoothness of the background radiation. Misner then suggested the Mixmaster universe, the  most complicated interpretation of the Einstein equations in which the universe expands at different rates in different directions and the gravitational waves generated by one direction interferes with all the others, with infinite complexity
  • Hannes Alfvén devised a matter-antimatter cosmology
  • Alan Guth (b.1947) in 1981 proposed a theory of ‘inflation’, that milliseconds after the big bang the universe underwent a swift process of hyper-expansion: inflation answers at a stroke a number of technical problems prompted by conventional big bang theory; but had the unforeseen implication that, though our region is smooth, parts of the universe beyond our light horizon might have grown from other areas of inflated singularity and have completely different qualities
  • Andrei Linde (b.1948) extrapolated that the inflationary regions might create sub-regions in  which further inflation might take place, so that a potentially infinite series of new universes spawn new universes in an ‘endlessly bifurcating multiverse’. We happen to be living in one of these bubbles which has lasted long enough for the heavy elements and therefore life to develop; who knows what’s happening in the other bubbles?
  • Ted Harrison (1919-2007) British cosmologist speculated that super-intelligent life forms might be able to develop and control baby universe, guiding the process of inflation so as to promote the constants require for just the right speed of growth to allow stars, planets and life forms to evolve. Maybe they’ve done it already. Maybe we are the result of their experiments.
  • Nick Bostrom (b.1973) Swedish philosopher: if universes can be created and developed like this then they will proliferate until the odds are that we are living in a ‘created’ universe and, maybe, are ourselves simulations in a kind of multiverse computer simulation

Although the arrival of Einstein and his theory of relativity marks a decisive break with the tradition of Newtonian physics, and comes at page 47 of this 300-page book, it seemed to me the really decisive break comes on page 198 with the publication Alan Guth’s theory of inflation.

Up till the Guth breakthrough, astrophysicists and astronomers appear to have focused their energy on the universe we inhabit. There were theoretical digressions into fantasies about other worlds and alternative universes but they appear to have been personal foibles and everyone agreed they were diversions from the main story.

Inflation

However, the idea of inflation, while it solved half a dozen problems caused by the idea of a big bang, seems to have spawned a literally fantastic series of theories and speculations.

Throughout the twentieth century, cosmologists grew used to studying the different types of universe that emerged from Einstein’s equations, but they expected that some special principle, or starting state, would pick out one that best described the actual universe. Now, unexpectedly, we find that there might be room for many, perhaps all, of these possible universes somewhere in the multiverse. (p.254)

This is a really massive shift and it is marked by a shift in the tone and approach of Barrow’s book. Up till this point it had jogged along at a brisk rate namechecking a steady stream of mathematicians, physicists and explaining how their successive models of the universe followed on from or varied from each other.

Now this procedure comes to a grinding halt while Barrow enters a realm of speculation. He discusses the notion that the universe we live in might be a fake, evolved from a long sequence of fakes, created and moulded by super-intelligences for their own purposes.

Each of us might be mannequins acting out experiments, observed by these super-intelligences. In which case what value would human life have? What would be the definition of free will?

Maybe the discrepancies we observe in some of the laws of the universe have been planted there as clues by higher intelligences? Or maybe, over vast periods of time, and countless iterations of new universes, the laws they first created for this universe where living intelligences could evolve have slipped, revealing the fact that the whole thing is a facade.

These super-intelligences would, of course, have computers and technology far in advance of ours etc. I felt like I had wandered into a prose version of The Matrix and, indeed, Barrow apologises for straying into areas normally associated with science fiction (p.241).

Imagine living in a universe where nothing is original. Everything is a fake. No ideas are ever new. There is no novelty, no originality. Nothing is ever done for the first time and nothing will ever be done for the last time… (p.244)

And so on. During this 15-page-long fantasy the handy sequence of physicists comes to an end as he introduces us to contemporary philosophers and ethicists who are paid to think about the problem of being a simulated being inside a simulated reality.

Take Robin Hanson (b.1959), a research associate at the Future of Humanity Institute of Oxford University who, apparently, advises us all that we ought to behave so as to prolong our existence in the simulation or, hopefully, ensure we get recreated in future iterations of the simulation.

Are these people mad? I felt like I’d been transported into an episode of The Outer Limits or was back with my schoolfriend Paul, lying in a summer field getting stoned and wondering whether dandelions were a form of alien life that were just biding their time till they could take over the world. Why not, man?

I suppose Barrow has to include this material, and explain the nature of the anthropic principle (p.250), and go on to a digression about the search for extra-terrestrial life (p.248), and discuss the ‘replication paradox’ (in an infinite universe there will be infinite copies of you and me in which we perform an infinite number of variations on our lives: what would happen if you came face to face with one of your ‘copies?? p.246) – because these are, in their way, theories – if very fantastical theories – about the nature of the universe and he his stated aim is to be completely comprehensive.

The anthropic principle

Observations of the universe must be compatible with the conscious and intelligent life that observes it. The universe is the way it is, because it has to be the way it is in order for life forms like us to evolve enough to understand it.

Still, it was a relief when he returned from vague and diffuse philosophical speculation to the more solid territory of specific physical theories for the last forty or so pages of the book. But it was very noticeable that, as he came up to date, the theories were less and less attached to individuals: modern research is carried out by large groups. And he increasingly is describing the swirl of ideas in which cosmologists work, which often don’t have or need specific names attached. And this change is denoted, in the texture of the prose, by an increase in the passive voice, the voice in which science papers are written: ‘it was observed that…’, ‘it was expected that…’, and so on.

  • Edward Tryon (b.1940) American particle physicist speculated that the entire universe might be a virtual fluctuation from the quantum vacuum, governed by the Heisenberg Uncertainty Principle that limits our simultaneous knowledge of the position and momentum, or the time of occurrence and energy, of anything in Nature.
  • George Ellis (b.1939) created a catalogue of ‘topologies’ or shapes which the universe might have
  • Dmitri Sokolov and Victor Shvartsman in 1974 worked out what the practical results would be for astronomers if we lived in a strange shaped universe, for example a vast doughnut shape
  • Yakob Zeldovich and Andrei Starobinsky in 1984 further explored the likelihood of various types of ‘wraparound’ universes, predicting the fluctuations in the cosmic background radiation which might confirm such a shape
  • 1967 the Wheeler-De Witt equation – a first attempt to combine Einstein’s equations of general relativity with the Schrödinger equation that describes how the quantum wave function changes with space and time
  • the ‘no boundary’ proposal – in 1982 Stephen Hawking and James Hartle used ‘an elegant formulation of quantum  mechanics introduced by Richard Feynman to calculate the probability that the universe would be found to be in a particular state. What is interesting is that in this theory time is not important; time is a quality that emerges only when the universe is big enough for quantum effects to become negligible; the universe doesn’t technically have a beginning because the nearer you approach to it, time disappears, becoming part of four-dimensional space. This ‘no boundary’ state is the centrepiece of Hawking’s bestselling book A Brief History of Time (1988). According to Barrow, the Hartle-Hawking model was eventually shown to lead to a universe that was infinitely large and empty i.e. not our one.
The Hartle-Hawking no boundary Hartle and Hawking No-Boundary Proposal

The Hartle-Hawking No-Boundary Proposal

  • In 1986 Barrow proposed a universe with a past but no beginning because all the paths through time and space would be very large closed loops
  • In 1997 Richard Gott and Li-Xin Li took the eternal inflationary universe postulated above and speculated that some of the branches loop back on themselves, giving birth to themselves
The self-creating universe of J.Richard Gott III and Li-Xin Li

The self-creating universe of J.Richard Gott III and Li-Xin Li

  • In 2001 Justin Khoury, Burt Ovrut, Paul Steinhardt and Neil Turok proposed a variation of the cyclic universe which incorporated strong theory and they called the ‘ekpyrotic’ universe, epkyrotic denoting the fiery flame into which each universe plunges only to be born again in a big bang. The new idea they introduced is that two three-dimensional universes may approach each other by moving through the additional dimensions posited by strong theory. When they collide they set off another big bang. These 3-D universes are called ‘braneworlds’, short for membrane, because they will be very thin
  • If a universe existing in a ‘bubble’ in another dimension ‘close’ to ours had ever impacted on our universe, some calculations indicate it would leave marks in the cosmic background radiation, a stripey effect.
  • In 1998 Andy Albrecht, João Maguijo and Barrow explored what might have happened if the speed of light, the most famous of cosmological constants, had in fact decreased in the first few milliseconds after the bang? There is now an entire suite of theories known as ‘Varying Speed of Light’ cosmologies.
  • Modern ‘String Theory’ only functions if it assumes quite a few more dimensions than the three we are used to. In fact some string theories require there to be more than one dimension of time. If there are really ten or 11 dimensions then, possibly, the ‘constants’ all physicists have taken for granted are only partial aspects of constants which exist in higher dimensions. Possibly, they might change, effectively undermining all of physics.
  • The Lambda-CDM model is a cosmological model in which the universe contains three major components: 1. a cosmological constant denoted by Lambda (Greek Λ) and associated with dark energy; 2. the postulated cold dark matter (abbreviated CDM); 3. ordinary matter. It is frequently referred to as the standard model of Big Bang cosmology because it is the simplest model that provides a reasonably good account of the following properties of the cosmos:
    • the existence and structure of the cosmic microwave background
    • the large-scale structure in the distribution of galaxies
    • the abundances of hydrogen (including deuterium), helium, and lithium
    • the accelerating expansion of the universe observed in the light from distant galaxies and supernovae

He ends with a summary of our existing knowledge, and indicates the deep puzzles which remain, not least the true nature of the ‘dark matter’ which is required to make sense of the expanding universe model. And he ends the whole book with a pithy soundbite. Speaking about the ongoing acceptance of models which posit a ‘multiverse’, in which all manner of other universes may be in existence, but beyond the horizon of where can see, he says:

Copernicus taught us that our planet was not at the centre of the universe. Now we may have to accept that even our universe is not at the centre of the Universe.


Reviews of other science books

Chemistry

Cosmology

The environment

Genetics and life

Human evolution

Maths

Particle physics

Psychology

The Last Three Minutes by Paul Davies (1994)

The telescope is also a timescope. (p.127)

Davies (b.1946) is an English physicist, writer and broadcaster. He’s written some 25 books, and hosted radio and TV series popularising science, especially in the areas of cosmology and particle physics, with a particular interest in the links between modern scientific theory and religion – hence his books God and the New Physics and The Mind of God.

The Last Three Minutes was his sixteenth book and part of the Science Masters series, short, clear primers written by experts across all areas of science. The advantage of The Last Three Minutes is that it is a clear explication of all the theories in this area; the drawback is that it is now precisely 25 years out of date, a long time in a fast-moving field like cosmology.

On the plus side, although the book might not capture the very latest discoveries and thinking, many of its basic facts remain unchanged, and many of those facts are enough to make the layman gawp in wonder before Davies even begins describing the wild and diverse cosmological theories.

1. Doomsday

The nearest star, Proxima Centauri, is 4.24 light years – twenty-four trillion years – away. Our galaxy is named the Milky Way. Until the 1920s astronomers thought all the stars in the universe were in the Milky Way. The observations of Edwin Hubble proved that the Milky Way is only one among billions of galaxies in the universe. The Milky Way is estimated to be somewhere around 200 light-years across. It might contain anything between 100 and 400 billion stars.

Our solar system is located about 26,000 light-years from the Galactic Centre on the inner edge of the Orion Arm, one of the spiral-shaped concentrations of gas and dust. The Milky Way is rotating. The sun and its retinue of planets take about 200 million years to rotate around the Galactic Centre.

The Earth could be destroyed by impact with any of the following:

  • asteroids, which are usually confined to a belt between Mars and Jupiter, but can be toppled out by passage of Jupiter’s mass
  • comets, believed to originate in an invisible cloud about a light year from the sun
  • giant clouds of gas won’t affect us directly but might affect the heat flow from the sun, with disastrous consequences
  • the Death Star some astronomers believe our sun may be part of a double-star system, with a remote twin star which may never be visible from Earth, but perturb elements in the system, such as our own orbit, or asteroids or comets

2. The Dying Universe

In 1856 the German physicist Hermann von Helmholtz proposed that the universe is dying because the heat in it will eventually become so evenly distributed that no heat passes from one area to another, no chemical reactions are possible, the universe reaches ‘thermodynamic equilibrium’ and is dead. In English this became known as the ‘heat death’ theory. In 1865 physicist Rudolf Clausius coined the term ‘entropy’ meaning ‘the unavailability of a system’s thermal energy for conversion into mechanical work, often interpreted as the degree of disorder or randomness in the system’. The heat death idea became widely accepted.

Davies points out that it’s odd that so many brainy people didn’t draw the obvious conclusion from the heat death idea, for if a) the universe is winding down towards a heat death and b) it has existed forever, then c) it would have died already. The fact that the universe is still full of wildly uneven distributions of energy and heat shows that it must have had a beginning.

Moreover, calculation of the mass of the universe should have indicated that a static universe would collapse in upon itself, clumps of matter slowly attracting each other, becoming larger and heavier, until all the matter in the universe is in one enormous ball.

The fact that the universe still has huge variations in heat indicates that it has not been around forever, i.e. it had a beginning. And the fact that it hasn’t collapsed suggests that a force equal or greater to gravity is working to drive the matter apart.

He explains Heisenberg’s Uncertainty Principle according to which ‘quantum particles do not possess sharply defined values for all their attributes’, and one of the odder consequences of  this, which is the existence of ‘quantum vacuums’ which are in fact full of incredibly short-lived ‘virtual’ particles popping in and out of existence.

3. The First Three Minutes

Davies recapitulates the familiar story that Edwin Hubble in the 1920s detected the red-shift in light which indicated that distant galaxies are moving away from us, and the further way they are, the faster they’re moving – overthrowing millenia of dogma by showing that the universe is moving, dynamic, changing.

Presumably, if it is moving outwards and expanding, it once had an origin. In 1965 astronomers detected the uniform background radiation which clinched the theory that there had, at some point in the distant past, been an explosion of inconceivable violence and intensity. The so-called cosmic microwave background (MCB) radiation is the remnant.

Further observation showed that it is uniform in every direction – isotropic – as theory predicts. But how did the universe get so lumpy? Astrophysicists speculated this must be because in initial conditions the explosion was not in fact uniform, but contained minute differentials.

This speculation was confirmed in 1992 when the Cosmic Background Explorer satellite detected ripples or unevenness in the MCB.

Complicated calculations predicted the likely ratios of key elements in the universe and these, also have been proved to be correct.

Taken together the expansion of the universe, the cosmic background radiation, and the relative abundance of the chemical elements strongly support the theory of a big bang.

Davies then explains modern theories of ‘inflation’ i.e. that the bang didn’t lead to a steady (if fast) rate of expansion of the early universe but, within milliseconds, experienced a short inconceivable process of ‘inflation’, in which anti-gravity pushed the exploding singularity into hyper-expansion.

The theory of inflation is called for because it solves problems about the existence and relative abundance of certain sub-atomic particles (magnetic monopoles), and also helps explain the unevenness of the resultant universe.

4. Stardoom

In February 1987 Canadian scientists based at an observatory in Chile noticed a supernova. This chapter explains how stars work (the fusion of hydrogen into helium releasing enormous amounts of energy) but that this outwards radiation of energy is always fighting off the force of gravity created by its dense core and that, sooner or later, all stars die, becoming supernovas, red dwarfs, red giants, white dwarfs, and so on, with colourful descriptions of each process.

Our sun is about half way through its expected life of 10 billion years. No need to panic yet.

He explains gravitational-wave emission.

5. Nightfall

Beginning with the commonplace observation that, eventually, every star in every galaxy will die, this chapter then goes on to describe some abstruse aspects of black holes, how they’re made, and unexpected and freakish aspects of their condition as stars which have collapsed under the weight of their own gravity.

John Wheeler coined the term ‘black hole’.

6. Weighing the Universe

If we all accept that the universe began in a cataclysmic Big Bang, the question is: Will it carry on expanding forever? Or will the gravity exerted by its mass eventually counteract the explosive force, slow the expansion to a halt, and then cause the universe to slowly but surely contract, retreating back towards a Big Crunch

Davies tells us more about neutrinos (one hundred billion billion of which are penetrating your body every second), as well as Weakly Interacting Massive Particles, or WIMPs.

The basic problem is that all the suns and other objects in the observable universe get nowhere near the mass required to explain the relatively slow expansion of the universe. There must be a huge amount of matter which we can’t see: either because it is sub-atomic, or hidden in black holes, or for some other reason.

Hence the talk over the last thirty years of more of the search for ‘dark matter’ which astrophysicists estimate must outweigh the visible matter in the universe by anything from ten to one to a hundred to one. Anyway,

Given our present state of knowledge, we cannot say whether the universe will expand forever or not. (p.79)

7. Forever Is A Long Time

Consideration of the nature of infinity turns into a description of the Hawking effect, Stephen Hawking’s theory that black holes might not trap everything, but might in fact emit a low level of radiation due to the presence of virtual vacuums in which quantum particles pop into existence in pairs on the event horizon of the hole, one particle getting sucked inside and producing a little flash of energy, the other escaping, and using that burst of energy to convert from being a temporary virtual particle into a real, lasting one.

This is one aspect of the likely fate of black holes which is to collapse evermore on themselves until they expire in a burst of radiation. Maybe.

He moves on to consider the periodicity of proton decay, the experiment set up in a tank of water deep underground in Cleveland Ohio which failed to measure a single proton decay. Why?

If protons do decay after an immense duration, the consequences for the far future of the universe are profound. All matter would be unstable, and would eventually disappear. (p.96)

He paints a picture of the universe in an inconceivably distant future, vast beyond imagining and full of ‘an inconceivably dilute soup of photons, neutrinos, and a dwindling number of electrons and positrons, all slowly moving farther and farther apart’ (p.98).

8. Life In the Slow Lane

Davies undermines his credibility by speculating on the chances of humanity’s survival in a universe winding down. Maybe we can colonise the galaxy one star system at a time. If we can build spaceships which travel at only 1% the speed of light, it would only take a few centuries to travel to the nearest star. The ships could be self-contained mini-worlds. Or people could be put into hibernation. Better still a few engineers would take along hundreds of thousands of fertilised embryos to be grown on arrival. Or we could genetically engineer ourselves to survive different atmospheres and gravities. Or we could create entities which are half organic matter, half silicon-based intelligence.

He writes as if his book needs to address what he takes to be a widespread fear or anxiety that mankind will eventually – eventually – go extinct. Doesn’t bother me.

Davies describes the work done by some physicists (Don Page and Randall McKee) to calculate the rate at which the black holes which are predicted to become steadily more common – this is tens of billions of years in the future – a) decay and b) coalesce. It is predicted that black holes might fall into each other. Since they give off a certain amount of Hawking radiation, the bigger the black hole, the cooler at the surface and the more Hawking radiation it will give off and, Davies assures us, some technologically advanced descendant of humanity may, tens of billions of years in the future, just may be able to tap this radiation as an energy source to keep on surviving and thinking.

Apparently John Barrow and Frank Tipler have speculated on how we could send nuclear warheads to perturbate the orbits of asteroids, sending them to detonate in the sun, which would fractionally alter its course. Given enough it could be steered towards other stars. In time new constellations of stars – maybe entire galaxies – could be manipulated in order to suit our purposes, to create new effects of gravity or heat which we could use.

Meanwhile, back in reality, we can’t even leave the EU let alone the solar system.

9. Life In the Fast Lane

The preceding discussions have been based on the notion of infinite expansion of a universe which degenerates to complete heat death. But what if it reaches an utmost expansion and… starts to contract. In, say, a hundred billion years’ time.

There follows a vivid science fiction-ish account of the at-first slowly contracting universe, which then shrinks faster and faster as the temperature of the background radiation relentlessly rises until it is hundreds of degrees Kelvin, stripping away planetary atmospheres, cooking all life forms, galaxies crushing into each other, black holes coalescing, the sky turning red, then yellow, then fierce white. Smaller and hotter till is it millions of degrees Kelvin and the nuclei of atoms fry and explode into a plasma of sub-atomic particles.

Davies speculates that an advanced superbeing may have created communications networks the breadth of the universe which allow for an extraordinary amount of information processing. If it is true that the subjective experience of time is related to the amount of information we process, then a superbeing which process an almost infinite amount of information, would slow down subjective time. In fact it might cheat death altogether by processing so much information / thought, that it slows time down almost to a standstill, and lives on in the creation of vast virtual universes.

10. Sudden Death – and rebirth

If the preceding chapter seems full of absurdly fanciful speculation, recall that Davies is being paid to work through all possible versions of the Last Three Minutes. The book is sub-titled conjectures about the ultimate fate of the universe.

So far he has described:

  1. eternal expansion and the cooling of the universe into a soup of sub-atomic particles: in which case there is no last three minutes
  2. the preceding chapter discusses what a Big Crunch would be like, the physical processes which would degrade the universe and he has clearly taken as part of his brief trying to speculate about how any sentient life forms would cope

In this chapter he discusses a genuinely unnerving scenario proposed by physicists Sidney Coleman and Frank de Luccia in 1980. Davies has already explained what a virtual vacuum is, a vacuum seething with quantum particles popping in and out of existence. We know therefore that there are different levels of ‘vacuum’, and we know that all thermodynamic systems seek the lowest sustainable level of energy.

What if our entire universe is in an artificially raised, false vacuum? What if a lower, truer form of genuinely empty vacuum spontaneously erupts somewhere and then spreads like a plague at the speed of light across the universe? It would create a bow wave in which matter would be stripped down to sub-atomic particles i.e. everything would be destroyed, and a new value of gravity which would crunch everything together instantaneously. The Big Crunch would come instantaneously with no warning.

Astronomer Royal Martin Rees spooked the cosmology community by pointing out that the experiments in sub-atomic particles currently being carried out by physicists might trigger just such a cataclysm.

Conversely, Japanese physicists in 1981 floated the possibility of creating a new universe by creating a small bubble of false vacuum. The prediction was that the bubble of false vacuum would expand very quickly but – here’s the bit that’s hard to visualise – without affecting our universe. Alan Guth, the man who developed the inflation theory of the early universe, worked on it with colleagues and predicted that, although an entirely new universe might appear and hugely expand in milliseconds, it would do so into a new space, creating a new universe, and have little or no impact on our one.

Maybe that’s how our universe began, as a baby budding off from an existing universe. Maybe there is an endless proliferation of universes going on all the time, everywhere. Maybe they can be created. Maybe our universe was created by intelligent beings in its parent universe, and deliberately endowed with the laws of chemistry and physics which encourage the development of intelligent life. Or maybe there is a Darwinian process at work, and each baby universe carries the best traits of its parents onwards and upwards.

For me, the flaw of all this type of thinking is that it all starts from the axiom that human intelligence is somehow paramount, exceptional, correct, privileged and of immense transcendent importance.

In my opinion it isn’t. Human beings and human intelligence are obviously an accident which came into being to deal with certain conditions and will pass away when conditions change. Humanity is a transient accident, made up of billions of transient entities.

11. Worlds Without End?

A trot through alternative versions of The End. As early as the 1930s, Richard Tolman speculated that after each big crunch the universe is born again in another big bang, creating a sequence or rebirths. Unfortunately, a number of factors militate against complete regularity; the contraction period would create unique problems to do with the conversion of mass into radiation which would mean the starting point of the next singularity would be different – more degraded, less energy – than the one before.

In 1983 the Russian physicist Andre Linde speculated that the quantum state of the early universe might have varied from region to region, and so different regions might have experienced Alan Guth’s hyper-inflationary growth at different rates.

There might be millions of bubble universes all expanding at different rates, maybe with different fundamental qualities. A kind of bubble bath of multiple universes. We find ourselves in one of them but way off, beyond the limit of our vision, there may be an infinity of alternatives.

There is no end to the manufacture of these baby universe, and maybe no beginning.

Lastly, Davies re-examines the ‘steady state’ version of the universe propounded by Hermann Bondi and and Thomas Gold in the 1950s. They conceded the universe is expanding but said it always has. They invented ‘the creation field’ which produced a steady stream of new matter to ensure the expanding universe was always filled with the same amount of matter, and therefore gravity, to keep it stable. Their theory is another way of dispensing of an ‘end’ of the universe, as of a ‘beginning’, but it suffers from logical problems and, for most cosmologists, was disproved by the discovery of the microwave background radiation in 1965.


Related links

Reviews of other science books

Chemistry

Cosmology

The Environment

Genetics and life

Human evolution

Maths

Particle physics

Psychology